--- library_name: transformers tags: - paper-summarization - lora - peft - llama license: mit datasets: - armanc/scientific_papers language: - en metrics: - rouge base_model: - meta-llama/Llama-3.2-1B-Instruct pipeline_tag: summarization --- # **Llama-PaperSummarization-LoRA** ## **Model Details** This is a **LoRA fine-tuned adapter** built on [**meta-llama/Llama-3.2-1B-Instruct**](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct). It is designed for scientific paper summarization tasks and leverages **Low-Rank Adaptation (LoRA)** to enhance model performance efficiently while maintaining a low computational overhead. ### **Performance comparison** | Model | ROUGE-1 | ROUGE-2 | ROUGE-3 | ROUGE-L | |---------------------------|----------|----------|----------|----------| | **Llama-3.2-1B-Instruct** | 36.69 | 7.47 | 1.95 | 19.36 | | **Llama-PaperSummarization-LoRA** | **41.56** | **11.31** | **2.67** | **21.86** | The model was evaluated on a **6K-sample test set** using **ROUGE scores** with beam search (beam size = 4). ### **How to load** ```python from transformers import LlamaForCausalLM, AutoTokenizer from peft import PeftModel base_model = LlamaForCausalLM.from_pretrained("meta-llama/Llama-3.2-1B-Instruct") peft_model_id = "gabe-zhang/Llama-PaperSummarization-LoRA" model = PeftModel.from_pretrained(base_model, peft_model_id) model.merge_and_unload() ``` ## **Dataset** The model was fine-tuned on the [**armanc/scientific_papers**](https://huggingface.co/datasets/armanc/scientific_papers) dataset. Below are the details of the dataset splits: - **Training Set**: 20K samples - **Validation Set**: 6K samples - **Test Set**: 6K samples ## **LoRA Configuration** - **Trainable Parameters**: 850K (~7% of base model parameters) - **Context Length**: 10K tokens - **Rank**: 8 - **Target Modules**: Query and Value matrices - **Optimization Settings**: - Gradient Accumulation: 4 steps - Training Steps: 5K ### **Training Setup** - **Hardware**: NVIDIA RTX A6000 GPU - **Evaluation Frequency**: Every 20 steps - **Training Duration**: 28 hours - **Training Scripts**: [gabe-zhang/paper2summary](https://github.com/gabe-zhang/paper2summary) ## **License** This repository contains a **LoRA fine-tuned adapter** derived from the Llama 3.2 model. - **Llama 3.2 Materials**: Governed by the [Llama 3.2 Community License](./LICENSE_Llama3.2). - **All other content**: Licensed under the [MIT License](./LICENSE). ### **Attribution** - The model prominently incorporates Llama 3.2 as its base. - "Built with Llama" is displayed as required by the Llama 3.2 Community License.