|
import torch |
|
import torch.nn as nn |
|
|
|
class WatermarkRemover(nn.Module): |
|
def __init__(self): |
|
super(WatermarkRemover, self).__init__() |
|
self.enc1 = self.conv_block(3, 64) |
|
self.enc2 = self.conv_block(64, 128) |
|
self.enc3 = self.conv_block(128, 256) |
|
self.enc4 = self.conv_block(256, 512) |
|
|
|
self.bottleneck = self.conv_block(512, 1024) |
|
|
|
self.dec4 = self.conv_block(1024 + 512, 512) |
|
self.dec3 = self.conv_block(512 + 256, 256) |
|
self.dec2 = self.conv_block(256 + 128, 128) |
|
self.dec1 = self.conv_block(128 + 64, 64) |
|
|
|
self.final_layer = nn.Conv2d(64, 3, kernel_size=1) |
|
|
|
def conv_block(self, in_channels, out_channels): |
|
return nn.Sequential( |
|
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), |
|
nn.ReLU(inplace=True), |
|
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1), |
|
nn.ReLU(inplace=True), |
|
) |
|
|
|
def forward(self, x): |
|
e1 = self.enc1(x) |
|
e2 = self.enc2(nn.MaxPool2d(2)(e1)) |
|
e3 = self.enc3(nn.MaxPool2d(2)(e2)) |
|
e4 = self.enc4(nn.MaxPool2d(2)(e3)) |
|
|
|
b = self.bottleneck(nn.MaxPool2d(2)(e4)) |
|
|
|
d4 = self.dec4(torch.cat((nn.Upsample(scale_factor=2)(b), e4), dim=1)) |
|
d3 = self.dec3(torch.cat((nn.Upsample(scale_factor=2)(d4), e3), dim=1)) |
|
d2 = self.dec2(torch.cat((nn.Upsample(scale_factor=2)(d3), e2), dim=1)) |
|
d1 = self.dec1(torch.cat((nn.Upsample(scale_factor=2)(d2), e1), dim=1)) |
|
|
|
return self.final_layer(d1) |
|
|