{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f709f13e390>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 524288, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651766903.630376, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABMdpT4DZ0M/U2FsPbkz1r760nc9D+QEvQAAAAAAAAAADWyhvlgwi73qG1y+LAScvQv+xT6WqSA+AAAAAAAAgD/wEd4+hAvWPub88j2jg0K+jnkdPn+oiTwAAAAAAAAAAEbnnD6oFMU9cjw/vmARQ7666nK9fcIiPAAAAAAAAAAAhvwsvgp6P7tSRD84/mUQNYuLezxqlV23AACAPwAAgD/T8j2+jlgOP56duzyJIpW+ZkU6vdAzz7wAAAAAAAAAADOFHr5XRzs8s6vBPbQ6TL7ZzDQ8ZgVKOwAAAAAAAAAAjYbVPY9aRrr9VjQ1MyQaLpTG9DrncUy0AAAAAAAAgD/NQc890kLMu6IQPb3BrAw94VYiPaCY6L0AAAAAAACAP7puZL5X6Zk/7deuvqSkBL+H+Re+9pRfPAAAAAAAAAAAwARVPsKxoj/vmKs+v66nvhb7BD5K2g69AAAAAAAAAAAClfu+oSg2P2+Brr2PLry+C6givnNr8LoAAAAAAAAAAMajgD60V7682C9Du9p6nzm0eie+jcVzOgAAgD8AAIA/BixePhtuWT/ApWI+9zCTvstSAz4bE/w8AAAAAAAAAACN5YU++lZCvaXTirraq3A59XSpvigOwjkAAIA/AACAP7DM3z5YrfA+JkQrPnqPmr7uquI9EUiFPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVbBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIF0m70QcVcUCUhpRSlIwBbJRNDAGMAXSUR0CLaq00m+j/dX2UKGgGaAloD0MIWYl5VlIAcUCUhpRSlGgVTQYBaBZHQItryUC7sfJ1fZQoaAZoCWgPQwge4bTgxXBvQJSGlFKUaBVNQAFoFkdAi20HTZxrBXV9lChoBmgJaA9DCDz2s1iKI1FAlIaUUpRoFU3oA2gWR0CLbbuejEehdX2UKGgGaAloD0MIxHx5AfatNUCUhpRSlGgVS8toFkdAi2479If8uXV9lChoBmgJaA9DCCZTBaMSim5AlIaUUpRoFU0MAWgWR0CLbk73fyf+dX2UKGgGaAloD0MImzxlNV0nN0CUhpRSlGgVS9toFkdAi26C704BFXV9lChoBmgJaA9DCJ5A2ClWWG9AlIaUUpRoFU0vAWgWR0CLcluuzQeFdX2UKGgGaAloD0MIWKoLeJmcYkCUhpRSlGgVTegDaBZHQItzZdD6WPd1fZQoaAZoCWgPQwhU4jrGlWZwQJSGlFKUaBVNLAFoFkdAi3fAoG6f8XV9lChoBmgJaA9DCENWt3rOgW9AlIaUUpRoFU0aAWgWR0CLeZsrupjudX2UKGgGaAloD0MIHZJaKJnNXUCUhpRSlGgVTegDaBZHQIt+tcMVk+Z1fZQoaAZoCWgPQwjA6zNn/fdvQJSGlFKUaBVNMwFoFkdAjDuHwG4ZuXV9lChoBmgJaA9DCLGH9rGCzGtAlIaUUpRoFU0NAWgWR0CMO8NQ0oBrdX2UKGgGaAloD0MIiXlW0orwbkCUhpRSlGgVTSMBaBZHQIw8NKK508x1fZQoaAZoCWgPQwgjFFtBU3VgQJSGlFKUaBVN6ANoFkdAjDyYXwb2lHV9lChoBmgJaA9DCHdOs0A7AG5AlIaUUpRoFU1SAWgWR0CMQXyTY/VzdX2UKGgGaAloD0MIsDvdeeK58j+UhpRSlGgVTRgBaBZHQIxCcy+HrQh1fZQoaAZoCWgPQwg8vr1r0KttQJSGlFKUaBVNNgFoFkdAjEPIOpbUw3V9lChoBmgJaA9DCGmn5nKDVm1AlIaUUpRoFU3FAWgWR0CMSvczImw8dX2UKGgGaAloD0MIZOdtbHbTXkCUhpRSlGgVTegDaBZHQIxMeE/Spit1fZQoaAZoCWgPQwjNrKWAtMFEQJSGlFKUaBVLxWgWR0CMU+4TbnHOdX2UKGgGaAloD0MIucfSh64abUCUhpRSlGgVTQ4BaBZHQIxUWVJL/S91fZQoaAZoCWgPQwgeUDblCttsQJSGlFKUaBVNzQJoFkdAjFUF6Z6Uq3V9lChoBmgJaA9DCG5rC8/L0m9AlIaUUpRoFU0ZAWgWR0CMVoyckMTfdX2UKGgGaAloD0MI6YAk7FslakCUhpRSlGgVTVcCaBZHQIxXXiaRZEF1fZQoaAZoCWgPQwhne/SGe4xsQJSGlFKUaBVNKQFoFkdAjFd1Z9uxbHV9lChoBmgJaA9DCAyuuaP/LTpAlIaUUpRoFUvRaBZHQIxXgKD01651fZQoaAZoCWgPQwggJ0wYzR9wQJSGlFKUaBVNAgFoFkdAjFnVIy0rsnV9lChoBmgJaA9DCOIBZVNuxnBAlIaUUpRoFU3MAWgWR0CMX1MjeKsNdX2UKGgGaAloD0MIMILGTCL6Z0CUhpRSlGgVTUkCaBZHQIxiUByS3b51fZQoaAZoCWgPQwiPGhNirnxuQJSGlFKUaBVNGAFoFkdAjGMXQdCE6HV9lChoBmgJaA9DCHvXoC99OHBAlIaUUpRoFU0hAWgWR0CMZNxVAAyVdX2UKGgGaAloD0MIFCAKZkxzWkCUhpRSlGgVTegDaBZHQIxm+CuloDh1fZQoaAZoCWgPQwhbXrneNjRxQJSGlFKUaBVL9WgWR0CMZzO1v2oOdX2UKGgGaAloD0MImdnnMcpz87+UhpRSlGgVS8doFkdAjGjOgpSaVnV9lChoBmgJaA9DCEljtI6qeW1AlIaUUpRoFU0fAWgWR0CMariHZbpvdX2UKGgGaAloD0MIM/0S8da7bkCUhpRSlGgVTQYBaBZHQIxq/IXCTEB1fZQoaAZoCWgPQwgdVrjlo5VuQJSGlFKUaBVNNQFoFkdAjGuplBhQWXV9lChoBmgJaA9DCIXv/Q3aImxAlIaUUpRoFU1HAWgWR0CMbqiblRxcdX2UKGgGaAloD0MIl445z9jLMUCUhpRSlGgVS+ZoFkdAjHOtXPqs2nV9lChoBmgJaA9DCAOWXMXiLm9AlIaUUpRoFU0cAWgWR0CMdD6kZaV2dX2UKGgGaAloD0MIkDLiAtDaXUCUhpRSlGgVTegDaBZHQIx3Vhd+ocd1fZQoaAZoCWgPQwh5B3jSwkNwQJSGlFKUaBVL5WgWR0CMeAsH0K7adX2UKGgGaAloD0MIWWlSCjoVbkCUhpRSlGgVTdgBaBZHQIx6dGXokiV1fZQoaAZoCWgPQwj0qWOVUvpvQJSGlFKUaBVL62gWR0CMfDZeRgZ1dX2UKGgGaAloD0MICWzOwTM3cECUhpRSlGgVTQIBaBZHQIx/BP/JeVt1fZQoaAZoCWgPQwgIV0Ch3j9wQJSGlFKUaBVNLwFoFkdAjH+K814xDnV9lChoBmgJaA9DCIUi3c9pAXBAlIaUUpRoFU1uAWgWR0CMgCSvkiljdX2UKGgGaAloD0MIwoanV0rAYUCUhpRSlGgVTegDaBZHQIyC0YVIqb11fZQoaAZoCWgPQwjDgCVXMVtuQJSGlFKUaBVNEAFoFkdAjIMZfD1oQHV9lChoBmgJaA9DCABV3LiFiHJAlIaUUpRoFU1vAWgWR0CMhdqqOtGNdX2UKGgGaAloD0MIdNNmnMYycECUhpRSlGgVTQ8BaBZHQIyHs5+6RQt1fZQoaAZoCWgPQwgDsAER4iNfQJSGlFKUaBVN6ANoFkdAjIruYplSTHV9lChoBmgJaA9DCGK7e4BuWG1AlIaUUpRoFU0nAWgWR0CMjTvb48EFdX2UKGgGaAloD0MIAoI5evycbECUhpRSlGgVTVoBaBZHQIyOGj2zv7Z1fZQoaAZoCWgPQwg6deWzvKRuQJSGlFKUaBVNLgFoFkdAjJKp0wJw9HV9lChoBmgJaA9DCJyLv+0JqjZAlIaUUpRoFUvkaBZHQIyULRjSXt11fZQoaAZoCWgPQwgykGeX74ZtQJSGlFKUaBVNfAFoFkdAjJdw1BMSK3V9lChoBmgJaA9DCExUbw1s92xAlIaUUpRoFU1DAWgWR0CMmC814xDcdX2UKGgGaAloD0MIY0UNpmHpbECUhpRSlGgVTT0BaBZHQIyYXAZbY9R1fZQoaAZoCWgPQwj/P06YsK1sQJSGlFKUaBVNuwFoFkdAjJnl1B+nZXV9lChoBmgJaA9DCCKrWz2nInFAlIaUUpRoFU1GAWgWR0CMnA8wHqu9dX2UKGgGaAloD0MIzNHj9zYVL0CUhpRSlGgVS+BoFkdAjJyhHCoCMnV9lChoBmgJaA9DCMlZ2NMODlRAlIaUUpRoFU3oA2gWR0CMorP9DQZ5dX2UKGgGaAloD0MIc6JdhZT/EMCUhpRSlGgVTRQBaBZHQIyjtJOFg2J1fZQoaAZoCWgPQwiCOuXRDX9tQJSGlFKUaBVNaQFoFkdAjKP1BdD6WXV9lChoBmgJaA9DCHe+nxovA21AlIaUUpRoFU0mAWgWR0CMpD0I1LrYdX2UKGgGaAloD0MIz7wcdt/3a0CUhpRSlGgVTQABaBZHQIynykTHsC11fZQoaAZoCWgPQwhan3JMFodCQJSGlFKUaBVLsWgWR0CMqYONo8ISdX2UKGgGaAloD0MIRBZp4h1mbECUhpRSlGgVTRwBaBZHQIyuLFId2gZ1fZQoaAZoCWgPQwioUrMHWsVQQJSGlFKUaBVN6ANoFkdAjK5DvmYBvXV9lChoBmgJaA9DCJlIaTYPAW9AlIaUUpRoFU0KAWgWR0CMsXdweeWfdX2UKGgGaAloD0MIHxDoTFocbECUhpRSlGgVTTUBaBZHQIyxx3/xUed1fZQoaAZoCWgPQwipwp/hzU9uQJSGlFKUaBVNkAFoFkdAjLIKU3XI2nV9lChoBmgJaA9DCNnQzf5AcFhAlIaUUpRoFU3oA2gWR0CMss9CeEqUdX2UKGgGaAloD0MIuRYtQFvVbECUhpRSlGgVTXoBaBZHQIy0PYzzmOl1fZQoaAZoCWgPQwhqh78mq3JwQJSGlFKUaBVL2WgWR0CMtFBqsU7CdX2UKGgGaAloD0MIs7YpHpeJb0CUhpRSlGgVTRgBaBZHQIy4zzbvgFZ1fZQoaAZoCWgPQwiFKF/QwgZtQJSGlFKUaBVNMAFoFkdAjLlrRBu4w3V9lChoBmgJaA9DCKJ/gosVHTFAlIaUUpRoFUvQaBZHQIy8mbutwJh1fZQoaAZoCWgPQwgYJH1aRe1tQJSGlFKUaBVNUgFoFkdAjL0Nz8xbjnV9lChoBmgJaA9DCMQj8fL0Cm5AlIaUUpRoFU0OAWgWR0CMvT9l2/zrdX2UKGgGaAloD0MIGCKnr6d6cECUhpRSlGgVTS4BaBZHQIy912JSBLB1fZQoaAZoCWgPQwgAOPbsucwyQJSGlFKUaBVL12gWR0CMv7/WlMyrdX2UKGgGaAloD0MIaHke3F0ncECUhpRSlGgVS/JoFkdAjMGwz1schnV9lChoBmgJaA9DCMkgdxGmIXFAlIaUUpRoFUvnaBZHQIzB/N3W4Ex1fZQoaAZoCWgPQwh+bmjKzvJvQJSGlFKUaBVNJgFoFkdAjMUuCGvfTHV9lChoBmgJaA9DCG/1nPT+FnFAlIaUUpRoFU0rAWgWR0CMx9C+lCTmdX2UKGgGaAloD0MIH4SAfAmwX0CUhpRSlGgVTegDaBZHQIzH95D7ZWd1fZQoaAZoCWgPQwhMcVXZ955vQJSGlFKUaBVNMQFoFkdAjMhMByS3b3V9lChoBmgJaA9DCLtE9dbATG9AlIaUUpRoFUv7aBZHQIzJCD9Oymh1fZQoaAZoCWgPQwgY6rDCLS1wQJSGlFKUaBVNMwFoFkdAjM2J66asqHV9lChoBmgJaA9DCORNfovON25AlIaUUpRoFU0MAWgWR0CMzjd+G47SdX2UKGgGaAloD0MIvW2mQjwyLkCUhpRSlGgVS71oFkdAjM52D6Fds3V9lChoBmgJaA9DCHRGlPZGVHBAlIaUUpRoFUv9aBZHQIzOdL39JjF1fZQoaAZoCWgPQwiDMSJRaKJgQJSGlFKUaBVN6ANoFkdAjM7dFvybx3V9lChoBmgJaA9DCIfguIwbNG9AlIaUUpRoFU01AWgWR0CM0Y+xGDtgdX2UKGgGaAloD0MIh78ma9RPbkCUhpRSlGgVTQ0BaBZHQIzRskMTewd1fZQoaAZoCWgPQwj0UNuGUb1uQJSGlFKUaBVL8GgWR0CM0hYDklu4dWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 170, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}