Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +20 -20
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 285.64 +/- 14.23
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fad6e0e2280>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fad6e0e2310>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fad6e0e23a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fad6e0e2430>", "_build": "<function ActorCriticPolicy._build at 0x7fad6e0e24c0>", "forward": "<function ActorCriticPolicy.forward at 0x7fad6e0e2550>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fad6e0e25e0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fad6e0e2670>", "_predict": "<function ActorCriticPolicy._predict at 0x7fad6e0e2700>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fad6e0e2790>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fad6e0e2820>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fad6e0e28b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fad6e0dc870>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678195421718592632, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAO1VLb4gIYo+amrjvIdUNr7MwAG9KmIAPgAAAAAAAAAAGkiMvbi0pruJ+ww9ZSMUPdIi6zwWT/W9AACAPwAAgD9NNja9XMs6uup6sjoj9yM23pOrO31M0LkAAIA/AACAP+YaJr2PFmm643hyO95+QrV9wKm6jDyOugAAgD8AAIA/2vnNPWAV2j6Bx7u9V31RvmgAGj06hdG9AAAAAAAAAADmDU69jxZLupwshruRB0S2dFAYuWJwnjoAAIA/AACAPwZ0Q75SmKw6icWZOlBlVLddSpO8UJ+zuQAAgD8AAIA/Zij7PI8eMbpbh7q76wInN9T9v7loy4+2AACAPwAAgD+apZE9UhDruTOCmrurxti1pfA/uvNgtzoAAIA/AACAP8r7g75FQsU8FG+xugx6Tzmp3Vy+ZRDvOQAAgD8AAIA/Jp4SvqTeHbuzGC8616TDNrcfADz2Skq5AACAPwAAgD+aukS9SJeMukpVpTqTru81cYXjuho1wLkAAIA/AACAP/OV1L1IK4a61tfIOkBYuzWTkqI6ywvquQAAgD8AAIA/I46Zvmxz8j7alb09oTpjvtTFmznKspa7AAAAAAAAAAAzF9W7Kdw9uqm1FjpukZw1Vsl6O+0EL7kAAIA/AACAP4b+hb4fb4880pHROq9dKLlPChy+5BMFugAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIv4HJjSIXXkCUhpRSlIwBbJRN6AOMAXSUR0CXUfw0fozOdX2UKGgGaAloD0MIHQWIgpnTYECUhpRSlGgVTegDaBZHQJdVvWH1vl51fZQoaAZoCWgPQwj6KY4DL01hQJSGlFKUaBVN6ANoFkdAl1mF09yLh3V9lChoBmgJaA9DCOTZ5Vsfe2FAlIaUUpRoFU3oA2gWR0CXWf79ycTbdX2UKGgGaAloD0MI5Pc2/Vk/YkCUhpRSlGgVTegDaBZHQJddIACGN711fZQoaAZoCWgPQwgJpS+EnIxiQJSGlFKUaBVN6ANoFkdAl11PN3W4E3V9lChoBmgJaA9DCNYbtcL0R2JAlIaUUpRoFU3oA2gWR0CXXnffXPJJdX2UKGgGaAloD0MIKLhYUYOXY0CUhpRSlGgVTegDaBZHQJdrdqtYB/91fZQoaAZoCWgPQwhA3NWryClYQJSGlFKUaBVN6ANoFkdAl3WGiQDFInV9lChoBmgJaA9DCK0W2GMiVVVAlIaUUpRoFU3oA2gWR0CXe8iR4hUzdX2UKGgGaAloD0MIqpog6r5HYECUhpRSlGgVTegDaBZHQJeNGTeO4oZ1fZQoaAZoCWgPQwjbT8b4sABhQJSGlFKUaBVN6ANoFkdAl5LD4DcM3XV9lChoBmgJaA9DCCb9vRSeCWJAlIaUUpRoFU3oA2gWR0CXk8ZfD1oQdX2UKGgGaAloD0MIHNDSFexMYUCUhpRSlGgVTegDaBZHQJeUgCW/rSp1fZQoaAZoCWgPQwj20akrH5ZgQJSGlFKUaBVN6ANoFkdAl5Z3cxj8UHV9lChoBmgJaA9DCAu45/nTCWNAlIaUUpRoFU3oA2gWR0CXtycxj8UFdX2UKGgGaAloD0MIiuPAq+WgX0CUhpRSlGgVTegDaBZHQJe3wFX7tRh1fZQoaAZoCWgPQwhgWWlSCrdiQJSGlFKUaBVN6ANoFkdAl7tHNX5nDnV9lChoBmgJaA9DCN7n+GhxDlxAlIaUUpRoFU3oA2gWR0CXvtZCfHxSdX2UKGgGaAloD0MIp7OTwVFsXkCUhpRSlGgVTegDaBZHQJe/SFN+LFZ1fZQoaAZoCWgPQwhtGttrQd9iQJSGlFKUaBVN6ANoFkdAl8Jx/7SApnV9lChoBmgJaA9DCOwzZ33KQ2RAlIaUUpRoFU3oA2gWR0CXwqOZ9d/sdX2UKGgGaAloD0MIDTm2niFiYECUhpRSlGgVTegDaBZHQJfD3NnoPkJ1fZQoaAZoCWgPQwghAaPLm8O1P5SGlFKUaBVL8WgWR0CXxnEpRXOodX2UKGgGaAloD0MIuRluwOdnPkCUhpRSlGgVTQgBaBZHQJfMY6ltTDR1fZQoaAZoCWgPQwg/qmG/J5xgQJSGlFKUaBVN6ANoFkdAl82VYQrc03V9lChoBmgJaA9DCFcm/FI/NWBAlIaUUpRoFU3oA2gWR0CX1qmgJ1JUdX2UKGgGaAloD0MIWYtPATCyPkCUhpRSlGgVTSMBaBZHQJfYBGCqZMN1fZQoaAZoCWgPQwhJLv8h/XVYQJSGlFKUaBVN6ANoFkdAl+BWK64DtHV9lChoBmgJaA9DCDwW26Qi8mRAlIaUUpRoFU3oA2gWR0CX9Q0fozN2dX2UKGgGaAloD0MIYVCm0WTsZECUhpRSlGgVTegDaBZHQJf7oChew9t1fZQoaAZoCWgPQwgS2nIuxd1cQJSGlFKUaBVN6ANoFkdAl/y7ZamoBXV9lChoBmgJaA9DCKa21EFeIlRAlIaUUpRoFU3oA2gWR0CX/XXcxj8UdX2UKGgGaAloD0MIKNNocrG/Y0CUhpRSlGgVTegDaBZHQJf/VKf4AS51fZQoaAZoCWgPQwi/SGjLuRRfQJSGlFKUaBVN6ANoFkdAmB+Rg7YChnV9lChoBmgJaA9DCMrDQq1pji9AlIaUUpRoFUv4aBZHQJgmmckMTex1fZQoaAZoCWgPQwiGxhNBHGxjQJSGlFKUaBVN6ANoFkdAmCdvc8DB/XV9lChoBmgJaA9DCG75SEp6pV1AlIaUUpRoFU3oA2gWR0CYJ+hK15SndX2UKGgGaAloD0MIfbPNjenPY0CUhpRSlGgVTegDaBZHQJgrK7FsHjZ1fZQoaAZoCWgPQwj8bU+Q2ExjQJSGlFKUaBVN6ANoFkdAmCzA1vVEu3V9lChoBmgJaA9DCBGmKJfGdGBAlIaUUpRoFU3oA2gWR0CYL4pOerdWdX2UKGgGaAloD0MIyjSaXIzFWUCUhpRSlGgVTegDaBZHQJg1AfEGZ/l1fZQoaAZoCWgPQwgXYvVHmEdhQJSGlFKUaBVN6ANoFkdAmDYGpZOi4HV9lChoBmgJaA9DCJc6yOvBMWNAlIaUUpRoFU3oA2gWR0CYPY0WM0gsdX2UKGgGaAloD0MI34lZL4b1VUCUhpRSlGgVTegDaBZHQJg+aitaIN51fZQoaAZoCWgPQwg3xk54CeNeQJSGlFKUaBVN6ANoFkdAmEPNHH3lCHV9lChoBmgJaA9DCP2C3bBtUR1AlIaUUpRoFU0NAWgWR0CYSQkX1rZbdX2UKGgGaAloD0MItoMR+4TtYECUhpRSlGgVTegDaBZHQJha1vegte51fZQoaAZoCWgPQwi05PG0fNhhQJSGlFKUaBVN6ANoFkdAmGFlw97ngnV9lChoBmgJaA9DCKcFL/oKbF9AlIaUUpRoFU3oA2gWR0CYYxmQ8wHrdX2UKGgGaAloD0MIms5OBsfUYECUhpRSlGgVTegDaBZHQJhlB47ihnJ1fZQoaAZoCWgPQwgqc/ON6J9kQJSGlFKUaBVN6ANoFkdAmIC0aya/h3V9lChoBmgJaA9DCKEQAYdQz2BAlIaUUpRoFU3oA2gWR0CYiIaBZpztdX2UKGgGaAloD0MIYFYo0v1uVUCUhpRSlGgVTegDaBZHQJiJuM+/xlR1fZQoaAZoCWgPQwh968N6I/BhQJSGlFKUaBVN6ANoFkdAmIpZcHGCI3V9lChoBmgJaA9DCCZywRl8PmFAlIaUUpRoFU3oA2gWR0CYjrOuJUHZdX2UKGgGaAloD0MIya60jFQPYkCUhpRSlGgVTegDaBZHQJiQ16sySFJ1fZQoaAZoCWgPQwjvHwvRoRVlQJSGlFKUaBVN6ANoFkdAmJSiiudPL3V9lChoBmgJaA9DCD/HR4uzv2JAlIaUUpRoFU3oA2gWR0CYmvundfsvdX2UKGgGaAloD0MIqOLGLeaHXkCUhpRSlGgVTegDaBZHQJijs+fRNRF1fZQoaAZoCWgPQwij5UAPtVZfQJSGlFKUaBVN6ANoFkdAmKSXhwVCX3V9lChoBmgJaA9DCHWQ14NJt2FAlIaUUpRoFU3oA2gWR0CYqlEHt4RmdX2UKGgGaAloD0MI1UFeDyZ8YkCUhpRSlGgVTegDaBZHQJivOy1NQCV1fZQoaAZoCWgPQwi9OPHVjmFhQJSGlFKUaBVN6ANoFkdAmLruVLSNO3V9lChoBmgJaA9DCLfxJyobfmRAlIaUUpRoFU3oA2gWR0CYwSExZdOZdX2UKGgGaAloD0MI8nfvqDEEZECUhpRSlGgVTegDaBZHQJjDi00FbFF1fZQoaAZoCWgPQwiz0qQUdH1fQJSGlFKUaBVN6ANoFkdAmMaU4//vOXV9lChoBmgJaA9DCGKh1jTvq11AlIaUUpRoFU3oA2gWR0CY5tuG9HtndX2UKGgGaAloD0MIO8YVF0d3XkCUhpRSlGgVTegDaBZHQJjuLTH80k51fZQoaAZoCWgPQwhnmUUotvhXQJSGlFKUaBVN6ANoFkdAmO8QtBfKIXV9lChoBmgJaA9DCIhjXdxGAGNAlIaUUpRoFU3oA2gWR0CY74bnHNordX2UKGgGaAloD0MIdXgI4yeYYUCUhpRSlGgVTegDaBZHQJjymrilzlt1fZQoaAZoCWgPQwgYeO49XAhbQJSGlFKUaBVN6ANoFkdAmPQV+d9Uj3V9lChoBmgJaA9DCKs+V1uxCmFAlIaUUpRoFU3oA2gWR0CY9sHerMkhdX2UKGgGaAloD0MIXDgQkoVnbECUhpRSlGgVTS0BaBZHQJj6ymWMS9N1fZQoaAZoCWgPQwgkY7X5f/VeQJSGlFKUaBVN6ANoFkdAmPwa1Cw8n3V9lChoBmgJaA9DCDUJ3pBG4ldAlIaUUpRoFU3oA2gWR0CZB1a7mMfjdX2UKGgGaAloD0MIp658luefZECUhpRSlGgVTegDaBZHQJkIaHj6vaF1fZQoaAZoCWgPQwg9Qzhm2QtcQJSGlFKUaBVN6ANoFkdAmQ6ha9sabXV9lChoBmgJaA9DCFe1pKOcp2VAlIaUUpRoFU3oA2gWR0CZErD5j6N3dX2UKGgGaAloD0MI5pXrbTOiYECUhpRSlGgVTegDaBZHQJkdmJP69Ch1fZQoaAZoCWgPQwhJL2r3K4VgQJSGlFKUaBVN6ANoFkdAmSLaDf3vhXV9lChoBmgJaA9DCAU0ETa8+GJAlIaUUpRoFU3oA2gWR0CZJJ18stkGdX2UKGgGaAloD0MIq7NaYI/1WECUhpRSlGgVTegDaBZHQJkmrR9gF5h1fZQoaAZoCWgPQwjc1avIaDhiQJSGlFKUaBVN6ANoFkdAmU+6DoQnQnV9lChoBmgJaA9DCNnMIakFY2JAlIaUUpRoFU3oA2gWR0CZUKFSsKb8dX2UKGgGaAloD0MIqtOBrKfmYkCUhpRSlGgVTegDaBZHQJlRKKqGUOd1fZQoaAZoCWgPQwgHI/YJoA5hQJSGlFKUaBVN6ANoFkdAmVRalDWsinV9lChoBmgJaA9DCLaizXHuEGFAlIaUUpRoFU3oA2gWR0CZVd0oScsldX2UKGgGaAloD0MIW9JRDmbLY0CUhpRSlGgVTegDaBZHQJlYfHaN+9d1fZQoaAZoCWgPQwjxn26gwIthQJSGlFKUaBVN6ANoFkdAmVzOuvECNnV9lChoBmgJaA9DCH8UdeYegmFAlIaUUpRoFU3oA2gWR0CZXeQ+lj3FdX2UKGgGaAloD0MIa0Wb49xRXECUhpRSlGgVTegDaBZHQJlmBKDkELZ1fZQoaAZoCWgPQwh9kjtsIt5gQJSGlFKUaBVN6ANoFkdAmWbOyJKraXV9lChoBmgJaA9DCJWCbi/pgGJAlIaUUpRoFU3oA2gWR0CZa+yFPBSDdX2UKGgGaAloD0MIlrTiGwpeYECUhpRSlGgVTegDaBZHQJlxYhdMTOB1fZQoaAZoCWgPQwiC4zJu6hFjQJSGlFKUaBVN6ANoFkdAmYNECmuTzXV9lChoBmgJaA9DCPQxHxDotGBAlIaUUpRoFU3oA2gWR0CZiRUYbbUPdX2UKGgGaAloD0MIVg4tsp2RVkCUhpRSlGgVTegDaBZHQJmK6+sYEW91fZQoaAZoCWgPQwiuLNFZZrphQJSGlFKUaBVN6ANoFkdAmY0YexOclXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4f3943a4c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4f3943a550>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4f3943a5e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4f3943a670>", "_build": "<function ActorCriticPolicy._build at 0x7f4f3943a700>", "forward": "<function ActorCriticPolicy.forward at 0x7f4f3943a790>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4f3943a820>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4f3943a8b0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4f3943a940>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4f3943a9d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4f3943aa60>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4f3943aaf0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4f394aed80>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1678198366039204694, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFqn4T0IUI8/tSmRPoeKB7/zcKo+jm6HPgAAAAAAAAAADfWNvTvZnj0yO5o9BIefvuv5xL02rzO9AAAAAAAAAAAzMgg9HE+wP9DPQz7AwpK+3ISWPFvZED4AAAAAAAAAALPxS73mnaM/hTYtvsaUHr9jjuq9YJ1rPQAAAAAAAAAAjfXkvacnzT6GkIo9lovqvk77l7wBbLG8AAAAAAAAAACzySy9e6qtuqRwCD7GQYixEDOkusBBBTMAAIA/AACAPzPmCj2P7lq6pksztKy9va+nPNE4QrGZMwAAgD8AAIA/DU3qvSnoKLo47Ke6Syp1t2AprDo9OM45AACAPwAAgD+anAi99ixnuu6ZMz6/igG2UPOKuhB++rQAAAAAAAAAAMAmEL6ujuM7mocQP66F2b3jLl68QwJ8PgAAAAAAAAAADeCKPaj3sD9KLn4+X7y9vgq/4z1B/SU+AAAAAAAAAAAtah8+VeRoPmaQhb6JExC/4bd8vf6nz70AAAAAAAAAAMBd6j32aFK6wCxOOq0OSrfT2n87Tk+fuQAAAAAAAAAABo0bPr81hT+LYEs+MXsJv20RwD42kTk+AAAAAAAAAADzvTI+AUSTvMYPfLp/pbQ4LKoEvkkWqDkAAIA/AACAPxpDBD5MR4g/jVBZPmTAE7+Myr8+y9ZVPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIizIbZFKsckCUhpRSlIwBbJRLzYwBdJRHQLAvHnGsFMZ1fZQoaAZoCWgPQwjjFvNzQ+9IQJSGlFKUaBVLgGgWR0CwLyOdGy5adX2UKGgGaAloD0MIkdWtnhNLcECUhpRSlGgVS+toFkdAsC9dZzPrwHV9lChoBmgJaA9DCANf0a0XFnRAlIaUUpRoFUvoaBZHQLAvZIeHSF51fZQoaAZoCWgPQwjwMsNGWaBxQJSGlFKUaBVLr2gWR0CwL6gckt2+dX2UKGgGaAloD0MIFymUhW/6cECUhpRSlGgVS+doFkdAsDABpWV/t3V9lChoBmgJaA9DCIHoSZnU6kxAlIaUUpRoFUuMaBZHQLAwBAmzByl1fZQoaAZoCWgPQwgogjgPJwRzQJSGlFKUaBVL0mgWR0CwMBPqC6H1dX2UKGgGaAloD0MIppwv9p4+ckCUhpRSlGgVTWwBaBZHQLAwE7xusLh1fZQoaAZoCWgPQwhXsI148vNxQJSGlFKUaBVLrGgWR0CwMEHpfQa8dX2UKGgGaAloD0MIhQoOL8jvcUCUhpRSlGgVS/toFkdAsDBjQu27WnV9lChoBmgJaA9DCEzirIia4G5AlIaUUpRoFUvSaBZHQLAwmKneizt1fZQoaAZoCWgPQwi45/nTBhpzQJSGlFKUaBVL2GgWR0CwMKqP0Zm7dX2UKGgGaAloD0MIQ8cOKrFCcUCUhpRSlGgVS6toFkdAsDDvnIQvpXV9lChoBmgJaA9DCMdKzLNSUXFAlIaUUpRoFU1nAWgWR0CwMQSA+Y+jdX2UKGgGaAloD0MIvXMoQ9VockCUhpRSlGgVS/doFkdAsDErxjJ+2HV9lChoBmgJaA9DCB5tHLGWs3BAlIaUUpRoFUuzaBZHQLAxXzQeFL51fZQoaAZoCWgPQwgZVYZx98BzQJSGlFKUaBVNPAFoFkdAsDFtGz8gp3V9lChoBmgJaA9DCHA+dawS2HNAlIaUUpRoFUvKaBZHQLAxnDQ7cO91fZQoaAZoCWgPQwjGbp9VZtJwQJSGlFKUaBVL3mgWR0CwMfuIRAbAdX2UKGgGaAloD0MIgc6kTVVPc0CUhpRSlGgVTQIBaBZHQLAx/bh3qzJ1fZQoaAZoCWgPQwiKV1nbFFZxQJSGlFKUaBVL+mgWR0CwMgC4SYgJdX2UKGgGaAloD0MIbhRZayhbc0CUhpRSlGgVS9NoFkdAsDIKo5xR23V9lChoBmgJaA9DCISDvYnh2nFAlIaUUpRoFUudaBZHQLAyK5myxA11fZQoaAZoCWgPQwgCnUmbamxyQJSGlFKUaBVL4GgWR0CwMndk4FRpdX2UKGgGaAloD0MIXfkszwMNY0CUhpRSlGgVTegDaBZHQLAyj29L6DZ1fZQoaAZoCWgPQwieQxmq4m9xQJSGlFKUaBVL32gWR0CwMwL+cYqHdX2UKGgGaAloD0MIrMq+K8JcckCUhpRSlGgVS7xoFkdAsDMhPLxI8XV9lChoBmgJaA9DCKCmlq01THJAlIaUUpRoFU0fAWgWR0CwMzvIXCTEdX2UKGgGaAloD0MIhqktdZDlcUCUhpRSlGgVS75oFkdAsDM71YhdMXV9lChoBmgJaA9DCOpZEMr7sGFAlIaUUpRoFU3oA2gWR0CwOXcS00FbdX2UKGgGaAloD0MIUwjkEkegT0CUhpRSlGgVS4toFkdAsDmCUC7sfXV9lChoBmgJaA9DCJY+dEH9YnJAlIaUUpRoFU0BAWgWR0CwOZilSCOFdX2UKGgGaAloD0MIthSQ9v8icUCUhpRSlGgVS7RoFkdAsDnC8DjioHV9lChoBmgJaA9DCJBOXfnsA3FAlIaUUpRoFUvDaBZHQLA56JXyRSx1fZQoaAZoCWgPQwjQ1OsWAUlzQJSGlFKUaBVL22gWR0CwOgZsoDxLdX2UKGgGaAloD0MIDmYTYFgVb0CUhpRSlGgVS8doFkdAsDoMXDWK/HV9lChoBmgJaA9DCFr0TgUcTnBAlIaUUpRoFUuyaBZHQLA6IoiLVFx1fZQoaAZoCWgPQwjlszwP7rYowJSGlFKUaBVLYmgWR0CwOilZowmFdX2UKGgGaAloD0MIW7BUF7BQckCUhpRSlGgVS8RoFkdAsDoyJoCdSXV9lChoBmgJaA9DCBHDDmNS2GRAlIaUUpRoFU3oA2gWR0CwOmXaSLZSdX2UKGgGaAloD0MIBn+/mK0fb0CUhpRSlGgVS79oFkdAsDp/i5uqFXV9lChoBmgJaA9DCDJYcaq1Tk1AlIaUUpRoFUuRaBZHQLA6kHHmzSl1fZQoaAZoCWgPQwjir8katbRxQJSGlFKUaBVL3GgWR0CwOsKbnX/YdX2UKGgGaAloD0MI7pOjAJFxckCUhpRSlGgVS+NoFkdAsDrdschkiHV9lChoBmgJaA9DCMGr5c6MiHBAlIaUUpRoFUvaaBZHQLA65yNn5BV1fZQoaAZoCWgPQwig/N07qmxwQJSGlFKUaBVLtmgWR0CwOvdKIznBdX2UKGgGaAloD0MIdR2qKckRcUCUhpRSlGgVS7ZoFkdAsDtAwUQCjnV9lChoBmgJaA9DCNBhvryANHFAlIaUUpRoFUuraBZHQLA7VkBjnV51fZQoaAZoCWgPQwj/snvy8PdxQJSGlFKUaBVL12gWR0CwO5NXDFZQdX2UKGgGaAloD0MIH/MBgQ5WcECUhpRSlGgVS+doFkdAsDuTVsk6cXV9lChoBmgJaA9DCCtPIOxUdXNAlIaUUpRoFUv8aBZHQLA7mr3TNMZ1fZQoaAZoCWgPQwgdklooWU9zQJSGlFKUaBVL2WgWR0CwO55DZ13ddX2UKGgGaAloD0MIMbPPY9S/cUCUhpRSlGgVS7JoFkdAsDuwWDYh+3V9lChoBmgJaA9DCE8Hsp6atXFAlIaUUpRoFU19AWgWR0CwO+W0Z3s5dX2UKGgGaAloD0MI9nzNchkScECUhpRSlGgVS8toFkdAsDvnO1OTJXV9lChoBmgJaA9DCE6Zm2/EonFAlIaUUpRoFUvkaBZHQLA75vNeMQ51fZQoaAZoCWgPQwiwOQfPhDZyQJSGlFKUaBVLtWgWR0CwPA8zyjHodX2UKGgGaAloD0MIhShf0MJSckCUhpRSlGgVS8toFkdAsDw7qoqCpXV9lChoBmgJaA9DCEK0VrR533BAlIaUUpRoFUvhaBZHQLA8O84Pwux1fZQoaAZoCWgPQwiJt86/nZFwQJSGlFKUaBVL4WgWR0CwPLoUvf0mdX2UKGgGaAloD0MIBW1y+CRkcECUhpRSlGgVS7doFkdAsDzBgKF7D3V9lChoBmgJaA9DCAqEnWIVjnFAlIaUUpRoFU0QAWgWR0CwPMTr/sE8dX2UKGgGaAloD0MIxxAAHHujb0CUhpRSlGgVS+doFkdAsDzZpWV/t3V9lChoBmgJaA9DCO4JEttdhmVAlIaUUpRoFU3oA2gWR0CwPOcxwhnrdX2UKGgGaAloD0MIiZenc0Uac0CUhpRSlGgVS8BoFkdAsDzv91loUXV9lChoBmgJaA9DCKJ8QQvJlHJAlIaUUpRoFUveaBZHQLA9APDHfdh1fZQoaAZoCWgPQwjpSZnUUBVuQJSGlFKUaBVL32gWR0CwPQsvVVghdX2UKGgGaAloD0MIUFPL1vpqcECUhpRSlGgVS9JoFkdAsD07ILgGbHV9lChoBmgJaA9DCMkE/BrJvXFAlIaUUpRoFUvTaBZHQLA9Pcm0E5h1fZQoaAZoCWgPQwiTjQdb7OpvQJSGlFKUaBVLrmgWR0CwPVaqsEJTdX2UKGgGaAloD0MIzXfwEweacUCUhpRSlGgVS+ZoFkdAsD1Zzjm0V3V9lChoBmgJaA9DCEYldQLafnBAlIaUUpRoFUvNaBZHQLA9gumrKeV1fZQoaAZoCWgPQwjedTbkH91yQJSGlFKUaBVL7GgWR0CwPYd78ejmdX2UKGgGaAloD0MIbLOxEvNJU0CUhpRSlGgVS4ZoFkdAsD2g7+1jRXV9lChoBmgJaA9DCGxdaoT+s3BAlIaUUpRoFUvGaBZHQLA98Lk0aZR1fZQoaAZoCWgPQwjT2cng6FBwQJSGlFKUaBVL2mgWR0CwPhX6Q/5ddX2UKGgGaAloD0MI+5XOh2esUUCUhpRSlGgVS49oFkdAsD49FkQPJHV9lChoBmgJaA9DCHdKB+u/RnJAlIaUUpRoFUvfaBZHQLA+QO4XoDB1fZQoaAZoCWgPQwhszOuIA25yQJSGlFKUaBVL3mgWR0CwPklm4AjqdX2UKGgGaAloD0MIwa27eapWc0CUhpRSlGgVS9xoFkdAsD5Zg6U7jnV9lChoBmgJaA9DCHrDfeTWW3BAlIaUUpRoFUvFaBZHQLA+c3LV4HJ1fZQoaAZoCWgPQwjG3LWEfMRvQJSGlFKUaBVLw2gWR0CwPnMn/kvLdX2UKGgGaAloD0MIOngmNEk7c0CUhpRSlGgVTSEBaBZHQLA+g4Pf8/F1fZQoaAZoCWgPQwjhRPRrK1dwQJSGlFKUaBVL9mgWR0CwPo5EH+qBdX2UKGgGaAloD0MILT9wlafubUCUhpRSlGgVS8hoFkdAsD6WgyuZC3V9lChoBmgJaA9DCEG2LF8XRHRAlIaUUpRoFUu2aBZHQLA+qsbNr0t1fZQoaAZoCWgPQwhlUG1wIvZkQJSGlFKUaBVN6ANoFkdAsD660dBBzHV9lChoBmgJaA9DCMwpATGJVHBAlIaUUpRoFUu+aBZHQLA+0VLzwtt1fZQoaAZoCWgPQwhWuVD51wJGQJSGlFKUaBVLjmgWR0CwPvURBeHBdX2UKGgGaAloD0MIHcu76kHgcECUhpRSlGgVS9JoFkdAsD89UfgaWHV9lChoBmgJaA9DCGGqmbUUfVBAlIaUUpRoFUuIaBZHQLA/QpMpPRB1fZQoaAZoCWgPQwi8df7tsmNxQJSGlFKUaBVLr2gWR0CwP0wJ9iMHdX2UKGgGaAloD0MI4ue/By/OckCUhpRSlGgVS6NoFkdAsD9Tn7pFC3V9lChoBmgJaA9DCKwahLldym5AlIaUUpRoFUu9aBZHQLA/rwiqyW11fZQoaAZoCWgPQwhRai+ibbl0QJSGlFKUaBVLsWgWR0CwP7i83++/dX2UKGgGaAloD0MI0ova/aoGc0CUhpRSlGgVS9RoFkdAsD+47DEWI3V9lChoBmgJaA9DCCNJEK4A1HBAlIaUUpRoFUvRaBZHQLA/xB0p3HJ1fZQoaAZoCWgPQwjLv5ZXLnVyQJSGlFKUaBVL92gWR0CwP8eZ5Rj0dX2UKGgGaAloD0MIs3qH26EEc0CUhpRSlGgVS9JoFkdAsD/XiT+vQnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1224, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07ea9ad27c3e9f63ebb938fa8e049e27b4e828d418cef06e7f90e40b8ef07b99
|
3 |
+
size 147442
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -43,12 +43,12 @@
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
-
"num_timesteps":
|
47 |
-
"_total_timesteps":
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
@@ -57,7 +57,7 @@
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -67,16 +67,16 @@
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
-
"_current_progress_remaining": -0.
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
-
"_n_updates":
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f4f3943a4c0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4f3943a550>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4f3943a5e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4f3943a670>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f4f3943a700>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f4f3943a790>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4f3943a820>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4f3943a8b0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f4f3943a940>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4f3943a9d0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4f3943aa60>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4f3943aaf0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f4f394aed80>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
+
"num_timesteps": 5013504,
|
47 |
+
"_total_timesteps": 5000000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1678198366039204694,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
|
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFqn4T0IUI8/tSmRPoeKB7/zcKo+jm6HPgAAAAAAAAAADfWNvTvZnj0yO5o9BIefvuv5xL02rzO9AAAAAAAAAAAzMgg9HE+wP9DPQz7AwpK+3ISWPFvZED4AAAAAAAAAALPxS73mnaM/hTYtvsaUHr9jjuq9YJ1rPQAAAAAAAAAAjfXkvacnzT6GkIo9lovqvk77l7wBbLG8AAAAAAAAAACzySy9e6qtuqRwCD7GQYixEDOkusBBBTMAAIA/AACAPzPmCj2P7lq6pksztKy9va+nPNE4QrGZMwAAgD8AAIA/DU3qvSnoKLo47Ke6Syp1t2AprDo9OM45AACAPwAAgD+anAi99ixnuu6ZMz6/igG2UPOKuhB++rQAAAAAAAAAAMAmEL6ujuM7mocQP66F2b3jLl68QwJ8PgAAAAAAAAAADeCKPaj3sD9KLn4+X7y9vgq/4z1B/SU+AAAAAAAAAAAtah8+VeRoPmaQhb6JExC/4bd8vf6nz70AAAAAAAAAAMBd6j32aFK6wCxOOq0OSrfT2n87Tk+fuQAAAAAAAAAABo0bPr81hT+LYEs+MXsJv20RwD42kTk+AAAAAAAAAADzvTI+AUSTvMYPfLp/pbQ4LKoEvkkWqDkAAIA/AACAPxpDBD5MR4g/jVBZPmTAE7+Myr8+y9ZVPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.0027007999999999477,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVKxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIizIbZFKsckCUhpRSlIwBbJRLzYwBdJRHQLAvHnGsFMZ1fZQoaAZoCWgPQwjjFvNzQ+9IQJSGlFKUaBVLgGgWR0CwLyOdGy5adX2UKGgGaAloD0MIkdWtnhNLcECUhpRSlGgVS+toFkdAsC9dZzPrwHV9lChoBmgJaA9DCANf0a0XFnRAlIaUUpRoFUvoaBZHQLAvZIeHSF51fZQoaAZoCWgPQwjwMsNGWaBxQJSGlFKUaBVLr2gWR0CwL6gckt2+dX2UKGgGaAloD0MIFymUhW/6cECUhpRSlGgVS+doFkdAsDABpWV/t3V9lChoBmgJaA9DCIHoSZnU6kxAlIaUUpRoFUuMaBZHQLAwBAmzByl1fZQoaAZoCWgPQwgogjgPJwRzQJSGlFKUaBVL0mgWR0CwMBPqC6H1dX2UKGgGaAloD0MIppwv9p4+ckCUhpRSlGgVTWwBaBZHQLAwE7xusLh1fZQoaAZoCWgPQwhXsI148vNxQJSGlFKUaBVLrGgWR0CwMEHpfQa8dX2UKGgGaAloD0MIhQoOL8jvcUCUhpRSlGgVS/toFkdAsDBjQu27WnV9lChoBmgJaA9DCEzirIia4G5AlIaUUpRoFUvSaBZHQLAwmKneizt1fZQoaAZoCWgPQwi45/nTBhpzQJSGlFKUaBVL2GgWR0CwMKqP0Zm7dX2UKGgGaAloD0MIQ8cOKrFCcUCUhpRSlGgVS6toFkdAsDDvnIQvpXV9lChoBmgJaA9DCMdKzLNSUXFAlIaUUpRoFU1nAWgWR0CwMQSA+Y+jdX2UKGgGaAloD0MIvXMoQ9VockCUhpRSlGgVS/doFkdAsDErxjJ+2HV9lChoBmgJaA9DCB5tHLGWs3BAlIaUUpRoFUuzaBZHQLAxXzQeFL51fZQoaAZoCWgPQwgZVYZx98BzQJSGlFKUaBVNPAFoFkdAsDFtGz8gp3V9lChoBmgJaA9DCHA+dawS2HNAlIaUUpRoFUvKaBZHQLAxnDQ7cO91fZQoaAZoCWgPQwjGbp9VZtJwQJSGlFKUaBVL3mgWR0CwMfuIRAbAdX2UKGgGaAloD0MIgc6kTVVPc0CUhpRSlGgVTQIBaBZHQLAx/bh3qzJ1fZQoaAZoCWgPQwiKV1nbFFZxQJSGlFKUaBVL+mgWR0CwMgC4SYgJdX2UKGgGaAloD0MIbhRZayhbc0CUhpRSlGgVS9NoFkdAsDIKo5xR23V9lChoBmgJaA9DCISDvYnh2nFAlIaUUpRoFUudaBZHQLAyK5myxA11fZQoaAZoCWgPQwgCnUmbamxyQJSGlFKUaBVL4GgWR0CwMndk4FRpdX2UKGgGaAloD0MIXfkszwMNY0CUhpRSlGgVTegDaBZHQLAyj29L6DZ1fZQoaAZoCWgPQwieQxmq4m9xQJSGlFKUaBVL32gWR0CwMwL+cYqHdX2UKGgGaAloD0MIrMq+K8JcckCUhpRSlGgVS7xoFkdAsDMhPLxI8XV9lChoBmgJaA9DCKCmlq01THJAlIaUUpRoFU0fAWgWR0CwMzvIXCTEdX2UKGgGaAloD0MIhqktdZDlcUCUhpRSlGgVS75oFkdAsDM71YhdMXV9lChoBmgJaA9DCOpZEMr7sGFAlIaUUpRoFU3oA2gWR0CwOXcS00FbdX2UKGgGaAloD0MIUwjkEkegT0CUhpRSlGgVS4toFkdAsDmCUC7sfXV9lChoBmgJaA9DCJY+dEH9YnJAlIaUUpRoFU0BAWgWR0CwOZilSCOFdX2UKGgGaAloD0MIthSQ9v8icUCUhpRSlGgVS7RoFkdAsDnC8DjioHV9lChoBmgJaA9DCJBOXfnsA3FAlIaUUpRoFUvDaBZHQLA56JXyRSx1fZQoaAZoCWgPQwjQ1OsWAUlzQJSGlFKUaBVL22gWR0CwOgZsoDxLdX2UKGgGaAloD0MIDmYTYFgVb0CUhpRSlGgVS8doFkdAsDoMXDWK/HV9lChoBmgJaA9DCFr0TgUcTnBAlIaUUpRoFUuyaBZHQLA6IoiLVFx1fZQoaAZoCWgPQwjlszwP7rYowJSGlFKUaBVLYmgWR0CwOilZowmFdX2UKGgGaAloD0MIW7BUF7BQckCUhpRSlGgVS8RoFkdAsDoyJoCdSXV9lChoBmgJaA9DCBHDDmNS2GRAlIaUUpRoFU3oA2gWR0CwOmXaSLZSdX2UKGgGaAloD0MIBn+/mK0fb0CUhpRSlGgVS79oFkdAsDp/i5uqFXV9lChoBmgJaA9DCDJYcaq1Tk1AlIaUUpRoFUuRaBZHQLA6kHHmzSl1fZQoaAZoCWgPQwjir8katbRxQJSGlFKUaBVL3GgWR0CwOsKbnX/YdX2UKGgGaAloD0MI7pOjAJFxckCUhpRSlGgVS+NoFkdAsDrdschkiHV9lChoBmgJaA9DCMGr5c6MiHBAlIaUUpRoFUvaaBZHQLA65yNn5BV1fZQoaAZoCWgPQwig/N07qmxwQJSGlFKUaBVLtmgWR0CwOvdKIznBdX2UKGgGaAloD0MIdR2qKckRcUCUhpRSlGgVS7ZoFkdAsDtAwUQCjnV9lChoBmgJaA9DCNBhvryANHFAlIaUUpRoFUuraBZHQLA7VkBjnV51fZQoaAZoCWgPQwj/snvy8PdxQJSGlFKUaBVL12gWR0CwO5NXDFZQdX2UKGgGaAloD0MIH/MBgQ5WcECUhpRSlGgVS+doFkdAsDuTVsk6cXV9lChoBmgJaA9DCCtPIOxUdXNAlIaUUpRoFUv8aBZHQLA7mr3TNMZ1fZQoaAZoCWgPQwgdklooWU9zQJSGlFKUaBVL2WgWR0CwO55DZ13ddX2UKGgGaAloD0MIMbPPY9S/cUCUhpRSlGgVS7JoFkdAsDuwWDYh+3V9lChoBmgJaA9DCE8Hsp6atXFAlIaUUpRoFU19AWgWR0CwO+W0Z3s5dX2UKGgGaAloD0MI9nzNchkScECUhpRSlGgVS8toFkdAsDvnO1OTJXV9lChoBmgJaA9DCE6Zm2/EonFAlIaUUpRoFUvkaBZHQLA75vNeMQ51fZQoaAZoCWgPQwiwOQfPhDZyQJSGlFKUaBVLtWgWR0CwPA8zyjHodX2UKGgGaAloD0MIhShf0MJSckCUhpRSlGgVS8toFkdAsDw7qoqCpXV9lChoBmgJaA9DCEK0VrR533BAlIaUUpRoFUvhaBZHQLA8O84Pwux1fZQoaAZoCWgPQwiJt86/nZFwQJSGlFKUaBVL4WgWR0CwPLoUvf0mdX2UKGgGaAloD0MIBW1y+CRkcECUhpRSlGgVS7doFkdAsDzBgKF7D3V9lChoBmgJaA9DCAqEnWIVjnFAlIaUUpRoFU0QAWgWR0CwPMTr/sE8dX2UKGgGaAloD0MIxxAAHHujb0CUhpRSlGgVS+doFkdAsDzZpWV/t3V9lChoBmgJaA9DCO4JEttdhmVAlIaUUpRoFU3oA2gWR0CwPOcxwhnrdX2UKGgGaAloD0MIiZenc0Uac0CUhpRSlGgVS8BoFkdAsDzv91loUXV9lChoBmgJaA9DCKJ8QQvJlHJAlIaUUpRoFUveaBZHQLA9APDHfdh1fZQoaAZoCWgPQwjpSZnUUBVuQJSGlFKUaBVL32gWR0CwPQsvVVghdX2UKGgGaAloD0MIUFPL1vpqcECUhpRSlGgVS9JoFkdAsD07ILgGbHV9lChoBmgJaA9DCMkE/BrJvXFAlIaUUpRoFUvTaBZHQLA9Pcm0E5h1fZQoaAZoCWgPQwiTjQdb7OpvQJSGlFKUaBVLrmgWR0CwPVaqsEJTdX2UKGgGaAloD0MIzXfwEweacUCUhpRSlGgVS+ZoFkdAsD1Zzjm0V3V9lChoBmgJaA9DCEYldQLafnBAlIaUUpRoFUvNaBZHQLA9gumrKeV1fZQoaAZoCWgPQwjedTbkH91yQJSGlFKUaBVL7GgWR0CwPYd78ejmdX2UKGgGaAloD0MIbLOxEvNJU0CUhpRSlGgVS4ZoFkdAsD2g7+1jRXV9lChoBmgJaA9DCGxdaoT+s3BAlIaUUpRoFUvGaBZHQLA98Lk0aZR1fZQoaAZoCWgPQwjT2cng6FBwQJSGlFKUaBVL2mgWR0CwPhX6Q/5ddX2UKGgGaAloD0MI+5XOh2esUUCUhpRSlGgVS49oFkdAsD49FkQPJHV9lChoBmgJaA9DCHdKB+u/RnJAlIaUUpRoFUvfaBZHQLA+QO4XoDB1fZQoaAZoCWgPQwhszOuIA25yQJSGlFKUaBVL3mgWR0CwPklm4AjqdX2UKGgGaAloD0MIwa27eapWc0CUhpRSlGgVS9xoFkdAsD5Zg6U7jnV9lChoBmgJaA9DCHrDfeTWW3BAlIaUUpRoFUvFaBZHQLA+c3LV4HJ1fZQoaAZoCWgPQwjG3LWEfMRvQJSGlFKUaBVLw2gWR0CwPnMn/kvLdX2UKGgGaAloD0MIOngmNEk7c0CUhpRSlGgVTSEBaBZHQLA+g4Pf8/F1fZQoaAZoCWgPQwjhRPRrK1dwQJSGlFKUaBVL9mgWR0CwPo5EH+qBdX2UKGgGaAloD0MILT9wlafubUCUhpRSlGgVS8hoFkdAsD6WgyuZC3V9lChoBmgJaA9DCEG2LF8XRHRAlIaUUpRoFUu2aBZHQLA+qsbNr0t1fZQoaAZoCWgPQwhlUG1wIvZkQJSGlFKUaBVN6ANoFkdAsD660dBBzHV9lChoBmgJaA9DCMwpATGJVHBAlIaUUpRoFUu+aBZHQLA+0VLzwtt1fZQoaAZoCWgPQwhWuVD51wJGQJSGlFKUaBVLjmgWR0CwPvURBeHBdX2UKGgGaAloD0MIHcu76kHgcECUhpRSlGgVS9JoFkdAsD89UfgaWHV9lChoBmgJaA9DCGGqmbUUfVBAlIaUUpRoFUuIaBZHQLA/QpMpPRB1fZQoaAZoCWgPQwi8df7tsmNxQJSGlFKUaBVLr2gWR0CwP0wJ9iMHdX2UKGgGaAloD0MI4ue/By/OckCUhpRSlGgVS6NoFkdAsD9Tn7pFC3V9lChoBmgJaA9DCKwahLldym5AlIaUUpRoFUu9aBZHQLA/rwiqyW11fZQoaAZoCWgPQwhRai+ibbl0QJSGlFKUaBVLsWgWR0CwP7i83++/dX2UKGgGaAloD0MI0ova/aoGc0CUhpRSlGgVS9RoFkdAsD+47DEWI3V9lChoBmgJaA9DCCNJEK4A1HBAlIaUUpRoFUvRaBZHQLA/xB0p3HJ1fZQoaAZoCWgPQwjLv5ZXLnVyQJSGlFKUaBVL92gWR0CwP8eZ5Rj0dX2UKGgGaAloD0MIs3qH26EEc0CUhpRSlGgVS9JoFkdAsD/XiT+vQnVlLg=="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
+
"_n_updates": 1224,
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:665c161f8d98a3cdeea6b5b0ec163776504ee4fd4416e51ee0a63a8855b4fb59
|
3 |
+
size 88057
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43393
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ab4b7e07e4cede070b7232d6a6561d7b12bd02108275d56310789d2e6ea0c636
|
3 |
size 43393
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 285.6372438483424, "std_reward": 14.229094549140575, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-07T15:28:53.587326"}
|