--- language: - en license: apache-2.0 tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:6300 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss base_model: BAAI/bge-base-en-v1.5 widget: - source_sentence: For example, brands based on major motion picture releases generally require less advertising as a result of the promotional activities around the motion picture release. sentences: - How many new hotels did Hilton open in the year ended December 31, 2023? - What impact do major motion picture releases have on Hasbro's advertising expenditures? - In which item of the report can the details of Legal proceedings be found by referencing? - source_sentence: Our retail stores are generally located in strip centers, shopping malls and pedestrian areas... We target strip centers that are conveniently located, have a mass merchant or supermarket anchor tenant and have a high volume of customers. sentences: - What is the range of pages in IBM’s 2023 Annual Report to Stockholders where the Financial Statements and Supplementary Data are located? - How does GameStop's store location choice impact its business strategy? - In which part of the financial documents can detailed information about legal proceedings be found according to Item 3? - source_sentence: The increase in fulfillment costs in absolute dollars in 2023, compared to the prior year, is primarily due to increased sales and investments in our fulfillment network, partially offset by fulfillment network efficiencies. sentences: - What led to the increase in fulfillment costs in 2023? - Where in the Form 10-K can one find Note 15 which discusses legal proceedings? - What accounting method does the company use to account for investments in subsidiaries and partnerships where it does not control but has significant influence? - source_sentence: 'In December 2023, the FASB issued ASU No. 2023-09, ‘Income Taxes (Topic 740): Improvements to Income Tax Disclosures.’ The ASU includes amendments requiring enhanced income tax disclosures, primarily related to standardization and disaggregation of rate reconciliation categories and income taxes paid by jurisdiction.' sentences: - What are the total noncancelable purchase commitments as of December 31, 2023, and how are they distributed over different time periods? - What are the primary objectives of the Company's investment policy? - What are the required amendments in the ASU No. 2023-09 regarding income tax disclosures? - source_sentence: Income Taxes We are subject to income taxes in the U.S. and in many foreign jurisdictions. Significant judgment is required in determining our provision for income taxes, our deferred tax assets and liabilities and any valuation allowance recorded against our net deferred tax assets that are not more likely than not to be realized. sentences: - How does the company treat income taxes in its financial reports? - How does YouTube contribute to users' experience according to the company's statement? - When did The Charles Schwab Corporation change its corporate headquarters from San Francisco to Westlake, Texas? pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 model-index: - name: BGE base Financial Matryoshka results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 768 type: dim_768 metrics: - type: cosine_accuracy@1 value: 0.7028571428571428 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.8185714285714286 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.85 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8914285714285715 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.7028571428571428 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2728571428571428 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.16999999999999998 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08914285714285713 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.7028571428571428 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.8185714285714286 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.85 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8914285714285715 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.798341878406338 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.7685107709750566 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.7724628591268551 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 512 type: dim_512 metrics: - type: cosine_accuracy@1 value: 0.6985714285714286 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.8157142857142857 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8528571428571429 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8985714285714286 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.6985714285714286 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.27190476190476187 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.17057142857142857 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08985714285714284 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.6985714285714286 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.8157142857142857 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8528571428571429 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8985714285714286 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7981564446782999 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.7661643990929705 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.7695965865934244 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.6971428571428572 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.8085714285714286 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8428571428571429 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8885714285714286 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.6971428571428572 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2695238095238095 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.16857142857142857 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08885714285714284 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.6971428571428572 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.8085714285714286 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8428571428571429 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8885714285714286 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7917977544361884 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.7611133786848071 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.765197446517495 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.6871428571428572 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.8028571428571428 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8342857142857143 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8857142857142857 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.6871428571428572 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2676190476190476 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.16685714285714284 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08857142857142856 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.6871428571428572 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.8028571428571428 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8342857142857143 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8857142857142857 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7844783501102325 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.7524892290249433 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.756590766205664 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.6571428571428571 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.7814285714285715 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.8114285714285714 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.8585714285714285 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.6571428571428571 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.2604761904761905 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.16228571428571428 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.08585714285714285 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.6571428571428571 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.7814285714285715 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.8114285714285714 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.8585714285714285 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.7570464835011314 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.7245481859410431 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.729409564724743 name: Cosine Map@100 --- # BGE base Financial Matryoshka This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity - **Training Dataset:** - json - **Language:** en - **License:** apache-2.0 ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("ethanteh/bge-base-financial-matryoshka") # Run inference sentences = [ 'Income Taxes We are subject to income taxes in the U.S. and in many foreign jurisdictions. Significant judgment is required in determining our provision for income taxes, our deferred tax assets and liabilities and any valuation allowance recorded against our net deferred tax assets that are not more likely than not to be realized.', 'How does the company treat income taxes in its financial reports?', "How does YouTube contribute to users' experience according to the company's statement?", ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 | |:--------------------|:-----------|:-----------|:-----------|:-----------|:----------| | cosine_accuracy@1 | 0.7029 | 0.6986 | 0.6971 | 0.6871 | 0.6571 | | cosine_accuracy@3 | 0.8186 | 0.8157 | 0.8086 | 0.8029 | 0.7814 | | cosine_accuracy@5 | 0.85 | 0.8529 | 0.8429 | 0.8343 | 0.8114 | | cosine_accuracy@10 | 0.8914 | 0.8986 | 0.8886 | 0.8857 | 0.8586 | | cosine_precision@1 | 0.7029 | 0.6986 | 0.6971 | 0.6871 | 0.6571 | | cosine_precision@3 | 0.2729 | 0.2719 | 0.2695 | 0.2676 | 0.2605 | | cosine_precision@5 | 0.17 | 0.1706 | 0.1686 | 0.1669 | 0.1623 | | cosine_precision@10 | 0.0891 | 0.0899 | 0.0889 | 0.0886 | 0.0859 | | cosine_recall@1 | 0.7029 | 0.6986 | 0.6971 | 0.6871 | 0.6571 | | cosine_recall@3 | 0.8186 | 0.8157 | 0.8086 | 0.8029 | 0.7814 | | cosine_recall@5 | 0.85 | 0.8529 | 0.8429 | 0.8343 | 0.8114 | | cosine_recall@10 | 0.8914 | 0.8986 | 0.8886 | 0.8857 | 0.8586 | | **cosine_ndcg@10** | **0.7983** | **0.7982** | **0.7918** | **0.7845** | **0.757** | | cosine_mrr@10 | 0.7685 | 0.7662 | 0.7611 | 0.7525 | 0.7245 | | cosine_map@100 | 0.7725 | 0.7696 | 0.7652 | 0.7566 | 0.7294 | ## Training Details ### Training Dataset #### json * Dataset: json * Size: 6,300 training samples * Columns: positive and anchor * Approximate statistics based on the first 1000 samples: | | positive | anchor | |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | positive | anchor | |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | During 2021, as a result of the enactment of a tax law and the closing of various acquisitions, the company concluded that it is no longer its intention to reinvest its undistributed earnings of its foreign TRSs indefinitely outside the United States. | What is the impact of a tax law change and acquisition closings on the company's intention regarding the reinvestment of undistributed earnings of its foreign TRSs? | | In the year ended December 31, 2023, EBIT-adjusted decreased primarily due to: (1) increased Cost primarily due to increased campaigns and other warranty-related costs of $2.0 billion, increased EV-related charges of $1.9 billion primarily due to $1.6 billion in inventory adjustments to reflect the net realizable value at period end. | What factors contributed to the decrease in GM North America's EBIT-adjusted in 2023? | | Peloton's e-commerce platform offers a range of products and services, including Peloton Bikes, Bike+, Tread, and Row products, along with one-on-one sales consultations. | What types of products and services does Peloton offer through its e-commerce platform? | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `gradient_accumulation_steps`: 16 - `learning_rate`: 2e-05 - `num_train_epochs`: 4 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `fp16`: True - `tf32`: False - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 8 - `per_device_eval_batch_size`: 8 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 2e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: True - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: False - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 | |:---------:|:-------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:| | 0.2030 | 10 | 9.6119 | - | - | - | - | - | | 0.4061 | 20 | 6.108 | - | - | - | - | - | | 0.6091 | 30 | 3.9303 | - | - | - | - | - | | 0.8122 | 40 | 3.4657 | - | - | - | - | - | | 1.0 | 50 | 3.6929 | 0.7928 | 0.7891 | 0.7849 | 0.7732 | 0.7465 | | 1.2030 | 60 | 1.86 | - | - | - | - | - | | 1.4061 | 70 | 1.3879 | - | - | - | - | - | | 1.6091 | 80 | 1.4367 | - | - | - | - | - | | 1.8122 | 90 | 1.1032 | - | - | - | - | - | | 2.0 | 100 | 1.696 | 0.7996 | 0.7966 | 0.7899 | 0.7815 | 0.7563 | | 2.2030 | 110 | 1.0769 | - | - | - | - | - | | 2.4061 | 120 | 0.6618 | - | - | - | - | - | | 2.6091 | 130 | 0.912 | - | - | - | - | - | | 2.8122 | 140 | 0.6271 | - | - | - | - | - | | 3.0 | 150 | 0.9949 | 0.7984 | 0.7973 | 0.7925 | 0.7835 | 0.7574 | | 3.2030 | 160 | 0.5734 | - | - | - | - | - | | 3.4061 | 170 | 0.4934 | - | - | - | - | - | | 3.6091 | 180 | 0.6593 | - | - | - | - | - | | 3.8122 | 190 | 0.5452 | - | - | - | - | - | | **3.934** | **196** | **-** | **0.7983** | **0.7982** | **0.7918** | **0.7845** | **0.757** | * The bold row denotes the saved checkpoint. ### Framework Versions - Python: 3.11.11 - Sentence Transformers: 3.3.1 - Transformers: 4.48.1 - PyTorch: 2.5.1+cu121 - Accelerate: 1.2.1 - Datasets: 2.19.1 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```