--- library_name: peft base_model: EleutherAI/pythia-14m tags: - axolotl - generated_from_trainer model-index: - name: 69b7eea5-e651-4261-bbe7-dff9a84f0402 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: EleutherAI/pythia-14m bf16: auto chat_template: llama3 dataloader_num_workers: 6 dataset_prepared_path: null datasets: - data_files: - 802c9640ea62abdd_train_data.json ds_type: json format: custom path: /workspace/input_data/802c9640ea62abdd_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping: metric: eval_loss mode: min patience: 3 eval_max_new_tokens: 128 eval_steps: 200 eval_table_size: null evals_per_epoch: null flash_attention: true fp16: true fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: false group_by_length: true hub_model_id: error577/69b7eea5-e651-4261-bbe7-dff9a84f0402 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0005 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.3 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: micro_batch_size: 8 mlflow_experiment_name: /tmp/802c9640ea62abdd_train_data.json model_type: AutoModelForCausalLM num_epochs: 50 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 200 sequence_len: 512 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.02 wandb_entity: null wandb_mode: online wandb_name: 8ea0398e-a0bd-403d-bf23-7a1713ec2e02 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 8ea0398e-a0bd-403d-bf23-7a1713ec2e02 warmup_steps: 100 weight_decay: 0.01 xformers_attention: null ```

# 69b7eea5-e651-4261-bbe7-dff9a84f0402 This model is a fine-tuned version of [EleutherAI/pythia-14m](https://huggingface.co/EleutherAI/pythia-14m) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.8237 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:-----:|:---------------:| | 39.1249 | 0.0026 | 1 | 10.0968 | | 71.4111 | 0.5282 | 200 | 9.3248 | | 44.3177 | 1.0565 | 400 | 8.1473 | | 49.1185 | 1.5847 | 600 | 6.9981 | | 50.9228 | 2.1129 | 800 | 6.6570 | | 40.8153 | 2.6411 | 1000 | 6.8431 | | 42.4526 | 3.1694 | 1200 | 7.7932 | | 39.7586 | 3.6976 | 1400 | 6.2292 | | 48.8855 | 4.2258 | 1600 | 5.4457 | | 44.0622 | 4.7540 | 1800 | 4.9771 | | 45.8481 | 5.2823 | 2000 | 6.3697 | | 47.8421 | 5.8105 | 2200 | 5.8377 | | 43.9395 | 6.3387 | 2400 | 5.1223 | | 85.549 | 6.8670 | 2600 | 6.1504 | | 47.3447 | 7.3952 | 2800 | 5.7667 | | 43.8816 | 7.9234 | 3000 | 5.3430 | | 40.3727 | 8.4516 | 3200 | 6.1097 | | 41.1325 | 8.9799 | 3400 | 5.1159 | | 40.9136 | 9.5081 | 3600 | 4.5801 | | 41.1352 | 10.0363 | 3800 | 6.2688 | | 39.6023 | 10.5645 | 4000 | 5.1909 | | 80.3153 | 11.0928 | 4200 | 6.4605 | | 45.0038 | 11.6210 | 4400 | 4.5793 | | 41.6005 | 12.1492 | 4600 | 4.9905 | | 45.3766 | 12.6775 | 4800 | 5.0839 | | 47.2055 | 13.2057 | 5000 | 4.8364 | | 39.6311 | 13.7339 | 5200 | 4.4988 | | 38.6004 | 14.2621 | 5400 | 4.3441 | | 40.9808 | 14.7904 | 5600 | 4.4398 | | 37.3181 | 15.3186 | 5800 | 5.1047 | | 36.6136 | 15.8468 | 6000 | 5.4884 | | 37.8118 | 16.3750 | 6200 | 4.3552 | | 36.0667 | 16.9033 | 6400 | 4.3316 | | 37.5132 | 17.4315 | 6600 | 4.8862 | | 50.9856 | 17.9597 | 6800 | 5.5664 | | 36.4944 | 18.4879 | 7000 | 4.2171 | | 45.6295 | 19.0162 | 7200 | 4.1826 | | 42.4406 | 19.5444 | 7400 | 4.0599 | | 26.7199 | 20.0726 | 7600 | 4.1067 | | 54.9829 | 20.6009 | 7800 | 4.8624 | | 39.5695 | 21.1291 | 8000 | 4.0729 | | 37.4214 | 21.6573 | 8200 | 3.9378 | | 36.9187 | 22.1855 | 8400 | 4.3148 | | 35.4205 | 22.7138 | 8600 | 4.1648 | | 35.7372 | 23.2420 | 8800 | 4.0165 | | 35.1088 | 23.7702 | 9000 | 3.8706 | | 39.2135 | 24.2984 | 9200 | 4.0032 | | 37.4056 | 24.8267 | 9400 | 3.9010 | | 34.5682 | 25.3549 | 9600 | 3.8448 | | 36.7296 | 25.8831 | 9800 | 4.0820 | | 42.8511 | 26.4114 | 10000 | 3.9215 | | 40.7808 | 26.9396 | 10200 | 3.8902 | | 15.1421 | 27.4678 | 10400 | 3.7762 | | 34.2062 | 27.9960 | 10600 | 3.8415 | | 36.2686 | 28.5243 | 10800 | 3.8351 | | 36.9976 | 29.0525 | 11000 | 3.7793 | | 35.2614 | 29.5807 | 11200 | 3.8270 | | 34.4366 | 30.1089 | 11400 | 3.7929 | | 34.2567 | 30.6372 | 11600 | 3.8164 | | 40.2896 | 31.1654 | 11800 | 3.7706 | | 37.7728 | 31.6936 | 12000 | 3.7791 | | 35.5756 | 32.2219 | 12200 | 3.7962 | | 34.3571 | 32.7501 | 12400 | 3.8736 | | 42.4826 | 33.2783 | 12600 | 3.7960 | | 40.7814 | 33.8065 | 12800 | 3.8017 | | 14.1216 | 34.3348 | 13000 | 3.7857 | | 11.2619 | 34.8630 | 13200 | 3.7641 | | 37.2205 | 35.3912 | 13400 | 3.8345 | | 35.3169 | 35.9194 | 13600 | 3.8081 | | 34.3745 | 36.4477 | 13800 | 3.7031 | | 34.5547 | 36.9759 | 14000 | 3.7369 | | 34.5162 | 37.5041 | 14200 | 3.6995 | | 37.7118 | 38.0324 | 14400 | 3.7207 | | 39.0695 | 38.5606 | 14600 | 3.7335 | | 34.4469 | 39.0888 | 14800 | 3.7482 | | 34.4357 | 39.6170 | 15000 | 3.7970 | | 43.1633 | 40.1453 | 15200 | 3.7945 | | 42.9024 | 40.6735 | 15400 | 3.7269 | | 14.7952 | 41.2017 | 15600 | 3.8083 | | 10.8769 | 41.7299 | 15800 | 3.7764 | | 35.1502 | 42.2582 | 16000 | 3.8323 | | 35.9114 | 42.7864 | 16200 | 3.7109 | | 34.8312 | 43.3146 | 16400 | 3.7495 | | 34.5818 | 43.8429 | 16600 | 3.7187 | | 33.9313 | 44.3711 | 16800 | 3.7662 | | 34.665 | 44.8993 | 17000 | 3.8026 | | 37.6367 | 45.4275 | 17200 | 3.6587 | | 38.0785 | 45.9558 | 17400 | 3.6727 | | 33.453 | 46.4840 | 17600 | 3.7711 | | 40.0688 | 47.0122 | 17800 | 3.7068 | | 40.0877 | 47.5404 | 18000 | 3.8389 | | 10.4014 | 48.0687 | 18200 | 3.7921 | | 10.9314 | 48.5969 | 18400 | 3.8024 | | 33.8793 | 49.1251 | 18600 | 3.7171 | | 34.2436 | 49.6534 | 18800 | 3.8237 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1