File size: 2,840 Bytes
c602b20
7773a2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c602b20
 
7773a2b
 
c602b20
7773a2b
c602b20
7773a2b
 
 
 
c602b20
7773a2b
c602b20
7773a2b
c602b20
7773a2b
c602b20
7773a2b
c602b20
7773a2b
c602b20
7773a2b
c602b20
7773a2b
c602b20
7773a2b
c602b20
7773a2b
 
 
 
 
 
 
 
 
 
 
 
c602b20
7773a2b
c602b20
7773a2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c602b20
 
7773a2b
c602b20
7773a2b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
language:
- fi
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
- hf-asr-leaderboard
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_13_0
metrics:
- wer
model-index:
- name: Whisper Large v3 Fine-Tuned Finnish
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Common Voice 13.0
      type: mozilla-foundation/common_voice_13_0
      config: fi
      split: None
    metrics:
    - name: Wer
      type: wer
      value: 24.28676605926744
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Large v3 Fine-Tuned Finnish

This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the Common Voice 13.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3108
- Wer: 24.2868

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- training_steps: 800
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer     |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.7157        | 0.21  | 50   | 0.4892          | 42.8216 |
| 0.6314        | 0.42  | 100  | 0.6716          | 58.7153 |
| 0.6187        | 0.63  | 150  | 0.5979          | 47.1195 |
| 0.5396        | 0.84  | 200  | 0.5503          | 45.8126 |
| 0.4857        | 1.05  | 250  | 0.5842          | 42.9873 |
| 0.246         | 1.26  | 300  | 0.5526          | 43.8984 |
| 0.2635        | 1.47  | 350  | 0.4893          | 39.4994 |
| 0.2346        | 1.68  | 400  | 0.4657          | 36.8489 |
| 0.2268        | 1.89  | 450  | 0.4163          | 34.5113 |
| 0.1345        | 2.11  | 500  | 0.4152          | 30.9590 |
| 0.0862        | 2.32  | 550  | 0.4157          | 32.6063 |
| 0.0723        | 2.53  | 600  | 0.3942          | 29.5785 |
| 0.0667        | 2.74  | 650  | 0.3654          | 28.3913 |
| 0.0571        | 2.95  | 700  | 0.3235          | 25.8513 |
| 0.0241        | 3.16  | 750  | 0.3109          | 25.0874 |
| 0.0124        | 3.37  | 800  | 0.3108          | 24.2868 |


### Framework versions

- Transformers 4.37.0.dev0
- Pytorch 2.0.1
- Datasets 2.16.1
- Tokenizers 0.15.0