elucidator8918 commited on
Commit
809af19
·
verified ·
1 Parent(s): c235537

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -0
README.md ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ datasets:
4
+ - starmpcc/Asclepius-Synthetic-Clinical-Notes
5
+ language:
6
+ - en
7
+ ---
8
+ ## Overview
9
+
10
+ This model, elucidator8918/clinical-ehr-prototype-0.2_GGUF is a Q4_K_M type GGUF and is tailored for clinical documentation, based on the Mistral-7B-Instruct-v0.3-sharded architecture fine-tuned on the Asclepius-Synthetic-Clinical-Notes dataset.
11
+
12
+ ## Key Information
13
+
14
+ - **Model Name**: Mistral-7B-Instruct-v0.3-sharded
15
+ - **Fine-tuned Model Name**: elucidator8918/clinical-ehr-prototype-0.2_GGUF
16
+ - **Dataset**: starmpcc/Asclepius-Synthetic-Clinical-Notes
17
+ - **Language**: English (en)
18
+
19
+ ## Model Details
20
+
21
+ - **LoRA Parameters (QLoRA):**
22
+ - LoRA attention dimension: 64
23
+ - Alpha parameter for LoRA scaling: 16
24
+ - Dropout probability for LoRA layers: 0.1
25
+
26
+ - **bitsandbytes Parameters:**
27
+ - Activate 4-bit precision base model loading
28
+ - Compute dtype for 4-bit base models: float16
29
+ - Quantization type: nf4
30
+ - Activate nested quantization for 4-bit base models: No
31
+
32
+ - **TrainingArguments Parameters:**
33
+ - Number of training epochs: 1
34
+ - Batch size per GPU for training: 4
35
+ - Batch size per GPU for evaluation: 4
36
+ - Gradient accumulation steps: 1
37
+ - Enable gradient checkpointing: Yes
38
+ - Maximum gradient norm: 0.3
39
+ - Initial learning rate: 2e-4
40
+ - Weight decay: 0.001
41
+ - Optimizer: paged_adamw_32bit
42
+ - Learning rate scheduler type: cosine
43
+ - Warm-up ratio: 0.03
44
+ - Group sequences into batches with the same length: Yes
45
+
46
+ ## License
47
+
48
+ This model is released under the MIT License.