File size: 2,809 Bytes
be069ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
license: apache-2.0
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: distilbert-base-uncased_fold_4_ternary_v1
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased_fold_4_ternary_v1

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.9355
- F1: 0.7891

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| No log        | 1.0   | 289  | 0.5637          | 0.7485 |
| 0.5729        | 2.0   | 578  | 0.5305          | 0.7805 |
| 0.5729        | 3.0   | 867  | 0.6948          | 0.7670 |
| 0.2548        | 4.0   | 1156 | 0.8351          | 0.7744 |
| 0.2548        | 5.0   | 1445 | 1.0005          | 0.8027 |
| 0.1157        | 6.0   | 1734 | 1.1578          | 0.7978 |
| 0.0473        | 7.0   | 2023 | 1.2275          | 0.7953 |
| 0.0473        | 8.0   | 2312 | 1.3245          | 0.7916 |
| 0.0276        | 9.0   | 2601 | 1.3728          | 0.7953 |
| 0.0276        | 10.0  | 2890 | 1.4577          | 0.7867 |
| 0.0149        | 11.0  | 3179 | 1.5832          | 0.7731 |
| 0.0149        | 12.0  | 3468 | 1.5056          | 0.7818 |
| 0.0143        | 13.0  | 3757 | 1.6263          | 0.7904 |
| 0.0066        | 14.0  | 4046 | 1.6596          | 0.7793 |
| 0.0066        | 15.0  | 4335 | 1.6795          | 0.7941 |
| 0.0022        | 16.0  | 4624 | 1.8443          | 0.7744 |
| 0.0022        | 17.0  | 4913 | 1.7160          | 0.7953 |
| 0.0034        | 18.0  | 5202 | 1.7819          | 0.7781 |
| 0.0034        | 19.0  | 5491 | 1.7931          | 0.7904 |
| 0.0036        | 20.0  | 5780 | 1.8447          | 0.7818 |
| 0.0014        | 21.0  | 6069 | 1.9975          | 0.7707 |
| 0.0014        | 22.0  | 6358 | 1.9324          | 0.7830 |
| 0.0008        | 23.0  | 6647 | 1.9086          | 0.7842 |
| 0.0008        | 24.0  | 6936 | 1.9507          | 0.7867 |
| 0.0002        | 25.0  | 7225 | 1.9355          | 0.7891 |


### Framework versions

- Transformers 4.21.0
- Pytorch 1.12.0+cu113
- Datasets 2.4.0
- Tokenizers 0.12.1