--- library_name: peft base_model: fxmarty/tiny-llama-fast-tokenizer tags: - axolotl - generated_from_trainer model-index: - name: 84251d34-62c9-48a3-b7ed-e86327b05ff7 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: fxmarty/tiny-llama-fast-tokenizer bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - d683d2cbbbb650a8_train_data.json ds_type: json format: custom path: /workspace/input_data/d683d2cbbbb650a8_train_data.json type: field_input: Ingredientes field_instruction: Nombre field_output: Pasos format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_steps: 50 eval_table_size: null evals_per_epoch: null flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 32 gradient_checkpointing: true group_by_length: false hub_model_id: eddysang/84251d34-62c9-48a3-b7ed-e86327b05ff7 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.00015 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj lr_scheduler: cosine max_grad_norm: 2 max_steps: 200 micro_batch_size: 2 mlflow_experiment_name: /tmp/d683d2cbbbb650a8_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1.0e-05 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 2048 special_tokens: pad_token: strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: yaudayah0 wandb_mode: online wandb_name: eaf0ed6f-f6ec-417e-9ead-2af5434e5974 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: eaf0ed6f-f6ec-417e-9ead-2af5434e5974 warmup_steps: 20 weight_decay: 0.015 xformers_attention: false ```

# 84251d34-62c9-48a3-b7ed-e86327b05ff7 This model is a fine-tuned version of [fxmarty/tiny-llama-fast-tokenizer](https://huggingface.co/fxmarty/tiny-llama-fast-tokenizer) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3443 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00015 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - training_steps: 200 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.3766 | 0.0034 | 1 | 10.3765 | | 10.3523 | 0.1694 | 50 | 10.3510 | | 10.3476 | 0.3388 | 100 | 10.3464 | | 10.344 | 0.5082 | 150 | 10.3446 | | 10.3461 | 0.6776 | 200 | 10.3443 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1