--- library_name: transformers license: apache-2.0 base_model: ntu-spml/distilhubert tags: - audio-classification - generated_from_trainer datasets: - common_language metrics: - accuracy model-index: - name: demo_LID_ntu-spml_distilhubert results: - task: name: Audio Classification type: audio-classification dataset: name: common_language type: common_language config: full split: validation args: full metrics: - name: Accuracy type: accuracy value: 0.6554008152173914 --- # demo_LID_ntu-spml_distilhubert This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the common_language dataset. It achieves the following results on the evaluation set: - Loss: 2.2545 - Accuracy: 0.6554 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 1 - seed: 0 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 9.6557 | 0.9989 | 693 | 2.6549 | 0.2614 | | 6.1707 | 1.9989 | 1386 | 1.8478 | 0.4681 | | 3.7871 | 2.9989 | 2079 | 1.6941 | 0.5474 | | 2.7966 | 3.9989 | 2772 | 1.8580 | 0.5579 | | 1.5871 | 4.9989 | 3465 | 1.6663 | 0.6140 | | 0.7355 | 5.9989 | 4158 | 1.9491 | 0.6155 | | 0.4492 | 6.9989 | 4851 | 2.0594 | 0.6379 | | 0.1528 | 7.9989 | 5544 | 2.1739 | 0.6403 | | 0.0468 | 8.9989 | 6237 | 2.3125 | 0.6505 | | 0.0045 | 9.9989 | 6930 | 2.2545 | 0.6554 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0