diogopaes10
commited on
Commit
·
6c39e80
1
Parent(s):
dad6435
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
base_model: microsoft/deberta-v3-base
|
4 |
+
tags:
|
5 |
+
- generated_from_trainer
|
6 |
+
metrics:
|
7 |
+
- f1
|
8 |
+
- accuracy
|
9 |
+
- precision
|
10 |
+
- recall
|
11 |
+
model-index:
|
12 |
+
- name: 009-microsoft-deberta-v3-base-finetuned-yahoo-800_200
|
13 |
+
results: []
|
14 |
+
---
|
15 |
+
|
16 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
17 |
+
should probably proofread and complete it, then remove this comment. -->
|
18 |
+
|
19 |
+
# 009-microsoft-deberta-v3-base-finetuned-yahoo-800_200
|
20 |
+
|
21 |
+
This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the None dataset.
|
22 |
+
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 1.1599
|
24 |
+
- F1: 0.6588
|
25 |
+
- Accuracy: 0.66
|
26 |
+
- Precision: 0.6659
|
27 |
+
- Recall: 0.66
|
28 |
+
- System Ram Used: 5.0546
|
29 |
+
- System Ram Total: 83.4807
|
30 |
+
- Gpu Ram Allocated: 4.1727
|
31 |
+
- Gpu Ram Cached: 26.7715
|
32 |
+
- Gpu Ram Total: 39.5640
|
33 |
+
- Gpu Utilization: 56
|
34 |
+
- Disk Space Used: 40.6642
|
35 |
+
- Disk Space Total: 78.1898
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 2e-05
|
55 |
+
- train_batch_size: 32
|
56 |
+
- eval_batch_size: 32
|
57 |
+
- seed: 42
|
58 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
59 |
+
- lr_scheduler_type: linear
|
60 |
+
- num_epochs: 15
|
61 |
+
|
62 |
+
### Training results
|
63 |
+
|
64 |
+
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | Precision | Recall | System Ram Used | System Ram Total | Gpu Ram Allocated | Gpu Ram Cached | Gpu Ram Total | Gpu Utilization | Disk Space Used | Disk Space Total |
|
65 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:|:---------:|:------:|:---------------:|:----------------:|:-----------------:|:--------------:|:-------------:|:---------------:|:---------------:|:----------------:|
|
66 |
+
| 2.3022 | 0.76 | 19 | 2.3012 | 0.0182 | 0.1 | 0.01 | 0.1 | 4.4456 | 83.4807 | 4.1727 | 26.7598 | 39.5640 | 45 | 33.7570 | 78.1898 |
|
67 |
+
| 2.2979 | 1.52 | 38 | 2.2854 | 0.0635 | 0.155 | 0.0449 | 0.155 | 5.0347 | 83.4807 | 4.1727 | 26.7715 | 39.5640 | 43 | 38.5922 | 78.1898 |
|
68 |
+
| 2.2316 | 2.28 | 57 | 2.1098 | 0.2285 | 0.305 | 0.2806 | 0.305 | 5.1781 | 83.4807 | 4.1727 | 26.7715 | 39.5640 | 44 | 40.6639 | 78.1898 |
|
69 |
+
| 1.9915 | 3.04 | 76 | 1.8477 | 0.4148 | 0.43 | 0.5040 | 0.43 | 5.1741 | 83.4807 | 4.1727 | 26.7715 | 39.5640 | 50 | 40.6639 | 78.1898 |
|
70 |
+
| 1.684 | 3.8 | 95 | 1.6027 | 0.5272 | 0.55 | 0.5666 | 0.55 | 5.1766 | 83.4807 | 4.1728 | 26.7715 | 39.5640 | 47 | 40.6639 | 78.1898 |
|
71 |
+
| 1.3911 | 4.56 | 114 | 1.4365 | 0.6060 | 0.615 | 0.6199 | 0.615 | 5.1746 | 83.4807 | 4.1728 | 26.7715 | 39.5640 | 49 | 40.6640 | 78.1898 |
|
72 |
+
| 1.1477 | 5.32 | 133 | 1.2565 | 0.6215 | 0.615 | 0.6419 | 0.615 | 5.1586 | 83.4807 | 4.1728 | 26.7715 | 39.5640 | 52 | 40.6640 | 78.1898 |
|
73 |
+
| 0.9198 | 6.08 | 152 | 1.1759 | 0.6400 | 0.64 | 0.6532 | 0.64 | 5.1810 | 83.4807 | 4.1727 | 26.7715 | 39.5640 | 55 | 40.6640 | 78.1898 |
|
74 |
+
| 0.7605 | 6.84 | 171 | 1.1128 | 0.6418 | 0.645 | 0.6564 | 0.645 | 5.1415 | 83.4807 | 4.1727 | 26.7715 | 39.5640 | 45 | 40.6640 | 78.1898 |
|
75 |
+
| 0.6093 | 7.6 | 190 | 1.0767 | 0.6678 | 0.67 | 0.6758 | 0.67 | 5.1347 | 83.4807 | 4.1728 | 26.7715 | 39.5640 | 43 | 40.6640 | 78.1898 |
|
76 |
+
| 0.5111 | 8.36 | 209 | 1.1033 | 0.6552 | 0.655 | 0.6742 | 0.655 | 5.1206 | 83.4807 | 4.1728 | 26.7715 | 39.5640 | 52 | 40.6641 | 78.1898 |
|
77 |
+
| 0.3828 | 9.12 | 228 | 1.1063 | 0.6875 | 0.69 | 0.6927 | 0.69 | 5.1484 | 83.4807 | 4.1727 | 26.7715 | 39.5640 | 44 | 40.6641 | 78.1898 |
|
78 |
+
| 0.3082 | 9.88 | 247 | 1.1240 | 0.6573 | 0.665 | 0.6595 | 0.665 | 5.1437 | 83.4807 | 4.1728 | 26.7715 | 39.5640 | 45 | 40.6641 | 78.1898 |
|
79 |
+
| 0.2716 | 10.64 | 266 | 1.1572 | 0.6604 | 0.665 | 0.6665 | 0.665 | 5.0689 | 83.4807 | 4.1728 | 26.7715 | 39.5640 | 45 | 40.6641 | 78.1898 |
|
80 |
+
| 0.2442 | 11.4 | 285 | 1.1058 | 0.6765 | 0.675 | 0.6827 | 0.675 | 5.0316 | 83.4807 | 4.1728 | 26.7715 | 39.5640 | 42 | 40.6641 | 78.1898 |
|
81 |
+
| 0.1791 | 12.16 | 304 | 1.1455 | 0.6445 | 0.645 | 0.6515 | 0.645 | 5.0715 | 83.4807 | 4.1728 | 26.7715 | 39.5640 | 46 | 40.6641 | 78.1898 |
|
82 |
+
| 0.1604 | 12.92 | 323 | 1.1514 | 0.6578 | 0.66 | 0.6686 | 0.66 | 5.0728 | 83.4807 | 4.1728 | 26.7715 | 39.5640 | 57 | 40.6641 | 78.1898 |
|
83 |
+
| 0.1389 | 13.68 | 342 | 1.1600 | 0.6715 | 0.675 | 0.6808 | 0.675 | 5.0655 | 83.4807 | 4.1727 | 26.7715 | 39.5640 | 48 | 40.6642 | 78.1898 |
|
84 |
+
| 0.151 | 14.44 | 361 | 1.1573 | 0.6626 | 0.665 | 0.6687 | 0.665 | 5.0588 | 83.4807 | 4.1727 | 26.7715 | 39.5640 | 48 | 40.6642 | 78.1898 |
|
85 |
+
|
86 |
+
|
87 |
+
### Framework versions
|
88 |
+
|
89 |
+
- Transformers 4.31.0
|
90 |
+
- Pytorch 2.0.1+cu118
|
91 |
+
- Datasets 2.13.1
|
92 |
+
- Tokenizers 0.13.3
|