File size: 1,977 Bytes
d01442e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7db3e69
16a6b72
d01442e
 
 
 
 
16a6b72
 
d01442e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
library_name: transformers
language:
- ko
license: apache-2.0
base_model: openai/whisper-large-v2
tags:
- generated_from_trainer
datasets:
- didiudom94/gentlemen
metrics:
- wer
model-index:
- name: Whisper Large-V2 Ko to En
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Gentlemen
      type: didiudom94/gentlemen
      args: 'split: train'
    metrics:
    - name: Wer
      type: wer
      value: 0.7335058679750543
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Large-V2 Ko to En

This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the Gentlemen dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0783
- Wer: 0.7335

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 400
- training_steps: 4000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 1.2034        | 0.2253 | 1000 | 1.2714          | 0.7977 |
| 1.1758        | 0.4507 | 2000 | 1.1820          | 0.7810 |
| 1.1567        | 0.6760 | 3000 | 1.1158          | 0.7590 |
| 1.0885        | 0.9013 | 4000 | 1.0783          | 0.7335 |


### Framework versions

- Transformers 4.45.2
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.20.3