readme: add model deprecation notice
Browse files
README.md
CHANGED
@@ -5,276 +5,7 @@ widget:
|
|
5 |
- text: "and I cannot conceive the reafon why [MASK] hath"
|
6 |
---
|
7 |
|
8 |
-
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
Our Historic Language Models Zoo contains support for the following languages - incl. their training data source:
|
13 |
-
|
14 |
-
| Language | Training data | Size
|
15 |
-
| -------- | ------------- | ----
|
16 |
-
| German | [Europeana](http://www.europeana-newspapers.eu/) | 13-28GB (filtered)
|
17 |
-
| French | [Europeana](http://www.europeana-newspapers.eu/) | 11-31GB (filtered)
|
18 |
-
| English | [British Library](https://data.bl.uk/digbks/db14.html) | 24GB (year filtered)
|
19 |
-
| Finnish | [Europeana](http://www.europeana-newspapers.eu/) | 1.2GB
|
20 |
-
| Swedish | [Europeana](http://www.europeana-newspapers.eu/) | 1.1GB
|
21 |
-
|
22 |
-
## Models
|
23 |
-
|
24 |
-
At the moment, the following models are available on the model hub:
|
25 |
-
|
26 |
-
| Model identifier | Model Hub link
|
27 |
-
| --------------------------------------------- | --------------------------------------------------------------------------
|
28 |
-
| `dbmdz/bert-base-historic-multilingual-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-multilingual-cased)
|
29 |
-
| `dbmdz/bert-base-historic-english-cased` | [here](https://huggingface.co/dbmdz/bert-base-historic-english-cased)
|
30 |
-
| `dbmdz/bert-base-finnish-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-finnish-europeana-cased)
|
31 |
-
| `dbmdz/bert-base-swedish-europeana-cased` | [here](https://huggingface.co/dbmdz/bert-base-swedish-europeana-cased)
|
32 |
-
|
33 |
-
# Corpora Stats
|
34 |
-
|
35 |
-
## German Europeana Corpus
|
36 |
-
|
37 |
-
We provide some statistics using different thresholds of ocr confidences, in order to shrink down the corpus size
|
38 |
-
and use less-noisier data:
|
39 |
-
|
40 |
-
| OCR confidence | Size
|
41 |
-
| -------------- | ----
|
42 |
-
| **0.60** | 28GB
|
43 |
-
| 0.65 | 18GB
|
44 |
-
| 0.70 | 13GB
|
45 |
-
|
46 |
-
For the final corpus we use a OCR confidence of 0.6 (28GB). The following plot shows a tokens per year distribution:
|
47 |
-
|
48 |
-
![German Europeana Corpus Stats](stats/figures/german_europeana_corpus_stats.png)
|
49 |
-
|
50 |
-
## French Europeana Corpus
|
51 |
-
|
52 |
-
Like German, we use different ocr confidence thresholds:
|
53 |
-
|
54 |
-
| OCR confidence | Size
|
55 |
-
| -------------- | ----
|
56 |
-
| 0.60 | 31GB
|
57 |
-
| 0.65 | 27GB
|
58 |
-
| **0.70** | 27GB
|
59 |
-
| 0.75 | 23GB
|
60 |
-
| 0.80 | 11GB
|
61 |
-
|
62 |
-
For the final corpus we use a OCR confidence of 0.7 (27GB). The following plot shows a tokens per year distribution:
|
63 |
-
|
64 |
-
![French Europeana Corpus Stats](stats/figures/french_europeana_corpus_stats.png)
|
65 |
-
|
66 |
-
## British Library Corpus
|
67 |
-
|
68 |
-
Metadata is taken from [here](https://data.bl.uk/digbks/DB21.html). Stats incl. year filtering:
|
69 |
-
|
70 |
-
| Years | Size
|
71 |
-
| ----------------- | ----
|
72 |
-
| ALL | 24GB
|
73 |
-
| >= 1800 && < 1900 | 24GB
|
74 |
-
|
75 |
-
We use the year filtered variant. The following plot shows a tokens per year distribution:
|
76 |
-
|
77 |
-
![British Library Corpus Stats](stats/figures/bl_corpus_stats.png)
|
78 |
-
|
79 |
-
## Finnish Europeana Corpus
|
80 |
-
|
81 |
-
| OCR confidence | Size
|
82 |
-
| -------------- | ----
|
83 |
-
| 0.60 | 1.2GB
|
84 |
-
|
85 |
-
The following plot shows a tokens per year distribution:
|
86 |
-
|
87 |
-
![Finnish Europeana Corpus Stats](stats/figures/finnish_europeana_corpus_stats.png)
|
88 |
-
|
89 |
-
## Swedish Europeana Corpus
|
90 |
-
|
91 |
-
| OCR confidence | Size
|
92 |
-
| -------------- | ----
|
93 |
-
| 0.60 | 1.1GB
|
94 |
-
|
95 |
-
The following plot shows a tokens per year distribution:
|
96 |
-
|
97 |
-
![Swedish Europeana Corpus Stats](stats/figures/swedish_europeana_corpus_stats.png)
|
98 |
-
|
99 |
-
## All Corpora
|
100 |
-
|
101 |
-
The following plot shows a tokens per year distribution of the complete training corpus:
|
102 |
-
|
103 |
-
![All Corpora Stats](stats/figures/all_corpus_stats.png)
|
104 |
-
|
105 |
-
# Multilingual Vocab generation
|
106 |
-
|
107 |
-
For the first attempt, we use the first 10GB of each pretraining corpus. We upsample both Finnish and Swedish to ~10GB.
|
108 |
-
The following tables shows the exact size that is used for generating a 32k and 64k subword vocabs:
|
109 |
-
|
110 |
-
| Language | Size
|
111 |
-
| -------- | ----
|
112 |
-
| German | 10GB
|
113 |
-
| French | 10GB
|
114 |
-
| English | 10GB
|
115 |
-
| Finnish | 9.5GB
|
116 |
-
| Swedish | 9.7GB
|
117 |
-
|
118 |
-
We then calculate the subword fertility rate and portion of `[UNK]`s over the following NER corpora:
|
119 |
-
|
120 |
-
| Language | NER corpora
|
121 |
-
| -------- | ------------------
|
122 |
-
| German | CLEF-HIPE, NewsEye
|
123 |
-
| French | CLEF-HIPE, NewsEye
|
124 |
-
| English | CLEF-HIPE
|
125 |
-
| Finnish | NewsEye
|
126 |
-
| Swedish | NewsEye
|
127 |
-
|
128 |
-
Breakdown of subword fertility rate and unknown portion per language for the 32k vocab:
|
129 |
-
|
130 |
-
| Language | Subword fertility | Unknown portion
|
131 |
-
| -------- | ------------------ | ---------------
|
132 |
-
| German | 1.43 | 0.0004
|
133 |
-
| French | 1.25 | 0.0001
|
134 |
-
| English | 1.25 | 0.0
|
135 |
-
| Finnish | 1.69 | 0.0007
|
136 |
-
| Swedish | 1.43 | 0.0
|
137 |
-
|
138 |
-
Breakdown of subword fertility rate and unknown portion per language for the 64k vocab:
|
139 |
-
|
140 |
-
| Language | Subword fertility | Unknown portion
|
141 |
-
| -------- | ------------------ | ---------------
|
142 |
-
| German | 1.31 | 0.0004
|
143 |
-
| French | 1.16 | 0.0001
|
144 |
-
| English | 1.17 | 0.0
|
145 |
-
| Finnish | 1.54 | 0.0007
|
146 |
-
| Swedish | 1.32 | 0.0
|
147 |
-
|
148 |
-
# Final pretraining corpora
|
149 |
-
|
150 |
-
We upsample Swedish and Finnish to ~27GB. The final stats for all pretraining corpora can be seen here:
|
151 |
-
|
152 |
-
| Language | Size
|
153 |
-
| -------- | ----
|
154 |
-
| German | 28GB
|
155 |
-
| French | 27GB
|
156 |
-
| English | 24GB
|
157 |
-
| Finnish | 27GB
|
158 |
-
| Swedish | 27GB
|
159 |
-
|
160 |
-
Total size is 130GB.
|
161 |
-
|
162 |
-
# Pretraining
|
163 |
-
|
164 |
-
## Multilingual model
|
165 |
-
|
166 |
-
We train a multilingual BERT model using the 32k vocab with the official BERT implementation
|
167 |
-
on a v3-32 TPU using the following parameters:
|
168 |
-
|
169 |
-
```bash
|
170 |
-
python3 run_pretraining.py --input_file gs://histolectra/historic-multilingual-tfrecords/*.tfrecord \
|
171 |
-
--output_dir gs://histolectra/bert-base-historic-multilingual-cased \
|
172 |
-
--bert_config_file ./config.json \
|
173 |
-
--max_seq_length=512 \
|
174 |
-
--max_predictions_per_seq=75 \
|
175 |
-
--do_train=True \
|
176 |
-
--train_batch_size=128 \
|
177 |
-
--num_train_steps=3000000 \
|
178 |
-
--learning_rate=1e-4 \
|
179 |
-
--save_checkpoints_steps=100000 \
|
180 |
-
--keep_checkpoint_max=20 \
|
181 |
-
--use_tpu=True \
|
182 |
-
--tpu_name=electra-2 \
|
183 |
-
--num_tpu_cores=32
|
184 |
-
```
|
185 |
-
|
186 |
-
The following plot shows the pretraining loss curve:
|
187 |
-
|
188 |
-
![Training loss curve](stats/figures/pretraining_loss_historic-multilingual.png)
|
189 |
-
|
190 |
-
## English model
|
191 |
-
|
192 |
-
The English BERT model - with texts from British Library corpus - was trained with the Hugging Face
|
193 |
-
JAX/FLAX implementation for 10 epochs (approx. 1M steps) on a v3-8 TPU, using the following command:
|
194 |
-
|
195 |
-
```bash
|
196 |
-
python3 run_mlm_flax.py --model_type bert \
|
197 |
-
--config_name /mnt/datasets/bert-base-historic-english-cased/ \
|
198 |
-
--tokenizer_name /mnt/datasets/bert-base-historic-english-cased/ \
|
199 |
-
--train_file /mnt/datasets/bl-corpus/bl_1800-1900_extracted.txt \
|
200 |
-
--validation_file /mnt/datasets/bl-corpus/english_validation.txt \
|
201 |
-
--max_seq_length 512 \
|
202 |
-
--per_device_train_batch_size 16 \
|
203 |
-
--learning_rate 1e-4 \
|
204 |
-
--num_train_epochs 10 \
|
205 |
-
--preprocessing_num_workers 96 \
|
206 |
-
--output_dir /mnt/datasets/bert-base-historic-english-cased-512-noadafactor-10e \
|
207 |
-
--save_steps 2500 \
|
208 |
-
--eval_steps 2500 \
|
209 |
-
--warmup_steps 10000 \
|
210 |
-
--line_by_line \
|
211 |
-
--pad_to_max_length
|
212 |
-
```
|
213 |
-
|
214 |
-
The following plot shows the pretraining loss curve:
|
215 |
-
|
216 |
-
![Training loss curve](stats/figures/pretraining_loss_historic_english.png)
|
217 |
-
|
218 |
-
## Finnish model
|
219 |
-
|
220 |
-
The BERT model - with texts from Finnish part of Europeana - was trained with the Hugging Face
|
221 |
-
JAX/FLAX implementation for 40 epochs (approx. 1M steps) on a v3-8 TPU, using the following command:
|
222 |
-
|
223 |
-
```bash
|
224 |
-
python3 run_mlm_flax.py --model_type bert \
|
225 |
-
--config_name /mnt/datasets/bert-base-finnish-europeana-cased/ \
|
226 |
-
--tokenizer_name /mnt/datasets/bert-base-finnish-europeana-cased/ \
|
227 |
-
--train_file /mnt/datasets/hlms/extracted_content_Finnish_0.6.txt \
|
228 |
-
--validation_file /mnt/datasets/hlms/finnish_validation.txt \
|
229 |
-
--max_seq_length 512 \
|
230 |
-
--per_device_train_batch_size 16 \
|
231 |
-
--learning_rate 1e-4 \
|
232 |
-
--num_train_epochs 40 \
|
233 |
-
--preprocessing_num_workers 96 \
|
234 |
-
--output_dir /mnt/datasets/bert-base-finnish-europeana-cased-512-dupe1-noadafactor-40e \
|
235 |
-
--save_steps 2500 \
|
236 |
-
--eval_steps 2500 \
|
237 |
-
--warmup_steps 10000 \
|
238 |
-
--line_by_line \
|
239 |
-
--pad_to_max_length
|
240 |
-
```
|
241 |
-
|
242 |
-
The following plot shows the pretraining loss curve:
|
243 |
-
|
244 |
-
![Training loss curve](stats/figures/pretraining_loss_finnish_europeana.png)
|
245 |
-
|
246 |
-
## Swedish model
|
247 |
-
|
248 |
-
The BERT model - with texts from Swedish part of Europeana - was trained with the Hugging Face
|
249 |
-
JAX/FLAX implementation for 40 epochs (approx. 660K steps) on a v3-8 TPU, using the following command:
|
250 |
-
|
251 |
-
```bash
|
252 |
-
python3 run_mlm_flax.py --model_type bert \
|
253 |
-
--config_name /mnt/datasets/bert-base-swedish-europeana-cased/ \
|
254 |
-
--tokenizer_name /mnt/datasets/bert-base-swedish-europeana-cased/ \
|
255 |
-
--train_file /mnt/datasets/hlms/extracted_content_Swedish_0.6.txt \
|
256 |
-
--validation_file /mnt/datasets/hlms/swedish_validation.txt \
|
257 |
-
--max_seq_length 512 \
|
258 |
-
--per_device_train_batch_size 16 \
|
259 |
-
--learning_rate 1e-4 \
|
260 |
-
--num_train_epochs 40 \
|
261 |
-
--preprocessing_num_workers 96 \
|
262 |
-
--output_dir /mnt/datasets/bert-base-swedish-europeana-cased-512-dupe1-noadafactor-40e \
|
263 |
-
--save_steps 2500 \
|
264 |
-
--eval_steps 2500 \
|
265 |
-
--warmup_steps 10000 \
|
266 |
-
--line_by_line \
|
267 |
-
--pad_to_max_length
|
268 |
-
```
|
269 |
-
|
270 |
-
The following plot shows the pretraining loss curve:
|
271 |
-
|
272 |
-
![Training loss curve](stats/figures/pretraining_loss_swedish_europeana.png)
|
273 |
-
|
274 |
-
# Acknowledgments
|
275 |
-
|
276 |
-
Research supported with Cloud TPUs from Google's TPU Research Cloud (TRC) program, previously known as
|
277 |
-
TensorFlow Research Cloud (TFRC). Many thanks for providing access to the TRC ❤️
|
278 |
-
|
279 |
-
Thanks to the generous support from the [Hugging Face](https://huggingface.co/) team,
|
280 |
-
it is possible to download both cased and uncased models from their S3 storage 🤗
|
|
|
5 |
- text: "and I cannot conceive the reafon why [MASK] hath"
|
6 |
---
|
7 |
|
8 |
+
🚨 Notice: After re-checking this model again, it seems that the model is not working very well. E.g. MLM predictions are very likely to predict `[UNK]` token, which is
|
9 |
+
actually not good.
|
10 |
|
11 |
+
We will update this model soon. For now, please use the [`bigscience-historical-texts/bert-base-blbooks-cased`](https://huggingface.co/bigscience-historical-texts/bert-base-blbooks-cased) instead, as it was pretrained on the same corpus.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|