zhouxingshi commited on
Commit
acf20e6
·
1 Parent(s): fa3e6da

Simplify configs

Browse files
.gitignore CHANGED
@@ -1,2 +1,3 @@
1
  __pycache__
2
- *.compiled
 
 
1
  __pycache__
2
+ *.compiled
3
+ *.optimized
cifar/gelu_4fc_100/config.yaml CHANGED
@@ -2,7 +2,6 @@ general:
2
  root_path: ${CONFIG_PATH} # Folder containing the csv and vnnlib files for verification.
3
  csv_name: instances.csv
4
  loss_reduction_func: min
5
- sparse_alpha: false
6
  model:
7
  name: >-
8
  Customized("../models/gelu.py", "gelu_4fc_100")
@@ -10,14 +9,9 @@ model:
10
  input_shape: [-1, 3, 32, 32]
11
  solver:
12
  batch_size: 512
13
- min_batch_size_ratio: 0
14
  alpha-crown:
15
  iteration: 50
16
  beta-crown:
17
  lr_alpha: 0.1
18
  lr_beta: 0.1
19
- iteration: 50
20
- bab:
21
- pruning_in_iteration: false # bug
22
- branching:
23
- method: nonlinear
 
2
  root_path: ${CONFIG_PATH} # Folder containing the csv and vnnlib files for verification.
3
  csv_name: instances.csv
4
  loss_reduction_func: min
 
5
  model:
6
  name: >-
7
  Customized("../models/gelu.py", "gelu_4fc_100")
 
9
  input_shape: [-1, 3, 32, 32]
10
  solver:
11
  batch_size: 512
 
12
  alpha-crown:
13
  iteration: 50
14
  beta-crown:
15
  lr_alpha: 0.1
16
  lr_beta: 0.1
17
+ iteration: 50
 
 
 
 
cifar/gelu_4fc_200/config.yaml CHANGED
@@ -1,7 +1,6 @@
1
  general:
2
  csv_name: instances.csv
3
  loss_reduction_func: min
4
- sparse_alpha: false
5
  root_path: ${CONFIG_PATH}
6
  model:
7
  name: >-
@@ -10,14 +9,9 @@ model:
10
  input_shape: [-1, 3, 32, 32]
11
  solver:
12
  batch_size: 256
13
- min_batch_size_ratio: 0
14
  alpha-crown:
15
  iteration: 50
16
  beta-crown:
17
  lr_alpha: 0.1
18
  lr_beta: 0.1
19
- iteration: 50
20
- bab:
21
- pruning_in_iteration: false # bug
22
- branching:
23
- method: nonlinear
 
1
  general:
2
  csv_name: instances.csv
3
  loss_reduction_func: min
 
4
  root_path: ${CONFIG_PATH}
5
  model:
6
  name: >-
 
9
  input_shape: [-1, 3, 32, 32]
10
  solver:
11
  batch_size: 256
 
12
  alpha-crown:
13
  iteration: 50
14
  beta-crown:
15
  lr_alpha: 0.1
16
  lr_beta: 0.1
17
+ iteration: 50
 
 
 
 
cifar/gelu_4fc_500/config.yaml CHANGED
@@ -2,22 +2,16 @@ general:
2
  root_path: ${CONFIG_PATH} # Folder containing the csv and vnnlib files for verification.
3
  csv_name: instances.csv
4
  loss_reduction_func: min
5
- sparse_alpha: false
6
  model:
7
  name: >-
8
  Customized("../models/gelu.py", "gelu_4fc_500")
9
  path: ${CONFIG_PATH}/model.pth
10
  input_shape: [-1, 3, 32, 32]
11
  solver:
12
- min_batch_size_ratio: 0
13
  batch_size: 128
14
  alpha-crown:
15
  iteration: 50
16
  beta-crown:
17
  lr_alpha: 0.1
18
  lr_beta: 0.1
19
- iteration: 50
20
- bab:
21
- pruning_in_iteration: false # bug
22
- branching:
23
- method: nonlinear
 
2
  root_path: ${CONFIG_PATH} # Folder containing the csv and vnnlib files for verification.
3
  csv_name: instances.csv
4
  loss_reduction_func: min
 
5
  model:
6
  name: >-
7
  Customized("../models/gelu.py", "gelu_4fc_500")
8
  path: ${CONFIG_PATH}/model.pth
9
  input_shape: [-1, 3, 32, 32]
10
  solver:
 
11
  batch_size: 128
12
  alpha-crown:
13
  iteration: 50
14
  beta-crown:
15
  lr_alpha: 0.1
16
  lr_beta: 0.1
17
+ iteration: 50
 
 
 
 
cifar/lstm_16_32/config.yaml CHANGED
@@ -1,8 +1,7 @@
1
  general:
2
  csv_name: instances.csv
3
  loss_reduction_func: min
4
- sparse_alpha: false
5
- sparse_interm: false
6
  root_path: ${CONFIG_PATH}
7
  model:
8
  name: >-
@@ -10,7 +9,6 @@ model:
10
  path: ${CONFIG_PATH}/model.pth
11
  input_shape: [-1, 3, 32, 32]
12
  solver:
13
- min_batch_size_ratio: 0
14
  batch_size: 2048
15
  alpha-crown:
16
  iteration: 20
@@ -18,8 +16,4 @@ solver:
18
  beta-crown:
19
  lr_alpha: 0.1
20
  lr_beta: 0.1
21
- iteration: 50
22
- bab:
23
- pruning_in_iteration: false # bug
24
- branching:
25
- method: nonlinear
 
1
  general:
2
  csv_name: instances.csv
3
  loss_reduction_func: min
4
+ conv_mode: matrix
 
5
  root_path: ${CONFIG_PATH}
6
  model:
7
  name: >-
 
9
  path: ${CONFIG_PATH}/model.pth
10
  input_shape: [-1, 3, 32, 32]
11
  solver:
 
12
  batch_size: 2048
13
  alpha-crown:
14
  iteration: 20
 
16
  beta-crown:
17
  lr_alpha: 0.1
18
  lr_beta: 0.1
19
+ iteration: 50
 
 
 
 
cifar/lstm_16_64/config.yaml CHANGED
@@ -1,8 +1,7 @@
1
  general:
2
  csv_name: instances.csv
3
  loss_reduction_func: min
4
- sparse_alpha: false
5
- sparse_interm: false
6
  root_path: ${CONFIG_PATH}
7
  model:
8
  name: >-
@@ -10,7 +9,6 @@ model:
10
  path: ${CONFIG_PATH}/model.pth
11
  input_shape: [-1, 3, 32, 32]
12
  solver:
13
- min_batch_size_ratio: 0
14
  batch_size: 512
15
  alpha-crown:
16
  iteration: 20
@@ -18,8 +16,4 @@ solver:
18
  beta-crown:
19
  lr_alpha: 0.1
20
  lr_beta: 0.1
21
- iteration: 50
22
- bab:
23
- pruning_in_iteration: false # bug
24
- branching:
25
- method: nonlinear
 
1
  general:
2
  csv_name: instances.csv
3
  loss_reduction_func: min
4
+ conv_mode: matrix
 
5
  root_path: ${CONFIG_PATH}
6
  model:
7
  name: >-
 
9
  path: ${CONFIG_PATH}/model.pth
10
  input_shape: [-1, 3, 32, 32]
11
  solver:
 
12
  batch_size: 512
13
  alpha-crown:
14
  iteration: 20
 
16
  beta-crown:
17
  lr_alpha: 0.1
18
  lr_beta: 0.1
19
+ iteration: 50
 
 
 
 
cifar/sigmoid_4fc_100/config.yaml CHANGED
@@ -9,7 +9,6 @@ model:
9
  path: ${CONFIG_PATH}/model.pth
10
  input_shape: [-1, 3, 32, 32]
11
  solver:
12
- min_batch_size_ratio: 0
13
  batch_size: 384
14
  alpha-crown:
15
  iteration: 50
@@ -18,7 +17,5 @@ solver:
18
  lr_beta: 0.1
19
  iteration: 50
20
  bab:
21
- pruning_in_iteration: false # bug
22
  branching:
23
- method: nonlinear
24
  reduceop: mean
 
9
  path: ${CONFIG_PATH}/model.pth
10
  input_shape: [-1, 3, 32, 32]
11
  solver:
 
12
  batch_size: 384
13
  alpha-crown:
14
  iteration: 50
 
17
  lr_beta: 0.1
18
  iteration: 50
19
  bab:
 
20
  branching:
 
21
  reduceop: mean
cifar/sigmoid_4fc_500/config.yaml CHANGED
@@ -2,14 +2,12 @@ general:
2
  root_path: ${CONFIG_PATH}
3
  csv_name: instances.csv
4
  loss_reduction_func: min
5
- sparse_alpha: false
6
  model:
7
  name: >-
8
  Customized("../models/sigmoid.py", "sigmoid_4fc_500")
9
  path: ${CONFIG_PATH}/model.pth
10
  input_shape: [-1, 3, 32, 32]
11
  solver:
12
- min_batch_size_ratio: 0
13
  batch_size: 64
14
  alpha-crown:
15
  iteration: 50
@@ -18,7 +16,5 @@ solver:
18
  lr_beta: 0.1
19
  iteration: 50
20
  bab:
21
- pruning_in_iteration: false # bug
22
  branching:
23
- method: nonlinear
24
  reduceop: mean
 
2
  root_path: ${CONFIG_PATH}
3
  csv_name: instances.csv
4
  loss_reduction_func: min
 
5
  model:
6
  name: >-
7
  Customized("../models/sigmoid.py", "sigmoid_4fc_500")
8
  path: ${CONFIG_PATH}/model.pth
9
  input_shape: [-1, 3, 32, 32]
10
  solver:
 
11
  batch_size: 64
12
  alpha-crown:
13
  iteration: 50
 
16
  lr_beta: 0.1
17
  iteration: 50
18
  bab:
 
19
  branching:
 
20
  reduceop: mean
cifar/sigmoid_6fc_100/config.yaml CHANGED
@@ -2,14 +2,12 @@ general:
2
  root_path: ${CONFIG_PATH}
3
  csv_name: instances.csv
4
  loss_reduction_func: min
5
- sparse_alpha: false
6
  model:
7
  name: >-
8
  Customized("../models/sigmoid.py", "sigmoid_6fc_100")
9
  path: ${CONFIG_PATH}/model.pth
10
  input_shape: [-1, 3, 32, 32]
11
  solver:
12
- min_batch_size_ratio: 0
13
  batch_size: 384
14
  alpha-crown:
15
  iteration: 50
@@ -18,7 +16,5 @@ solver:
18
  lr_beta: 0.1
19
  iteration: 50
20
  bab:
21
- pruning_in_iteration: false # bug
22
  branching:
23
- method: nonlinear
24
  reduceop: mean
 
2
  root_path: ${CONFIG_PATH}
3
  csv_name: instances.csv
4
  loss_reduction_func: min
 
5
  model:
6
  name: >-
7
  Customized("../models/sigmoid.py", "sigmoid_6fc_100")
8
  path: ${CONFIG_PATH}/model.pth
9
  input_shape: [-1, 3, 32, 32]
10
  solver:
 
11
  batch_size: 384
12
  alpha-crown:
13
  iteration: 50
 
16
  lr_beta: 0.1
17
  iteration: 50
18
  bab:
 
19
  branching:
 
20
  reduceop: mean
cifar/sigmoid_6fc_200/config.yaml CHANGED
@@ -2,14 +2,12 @@ general:
2
  root_path: ${CONFIG_PATH}
3
  csv_name: instances.csv
4
  loss_reduction_func: min
5
- sparse_alpha: false
6
  model:
7
  name: >-
8
  Customized("../models/sigmoid.py", "sigmoid_6fc_200")
9
  path: ${CONFIG_PATH}/model.pth
10
  input_shape: [-1, 3, 32, 32]
11
  solver:
12
- min_batch_size_ratio: 0
13
  batch_size: 128
14
  alpha-crown:
15
  iteration: 50
@@ -18,7 +16,5 @@ solver:
18
  lr_beta: 0.1
19
  iteration: 50
20
  bab:
21
- pruning_in_iteration: false # bug
22
  branching:
23
- method: nonlinear
24
  reduceop: mean
 
2
  root_path: ${CONFIG_PATH}
3
  csv_name: instances.csv
4
  loss_reduction_func: min
 
5
  model:
6
  name: >-
7
  Customized("../models/sigmoid.py", "sigmoid_6fc_200")
8
  path: ${CONFIG_PATH}/model.pth
9
  input_shape: [-1, 3, 32, 32]
10
  solver:
 
11
  batch_size: 128
12
  alpha-crown:
13
  iteration: 50
 
16
  lr_beta: 0.1
17
  iteration: 50
18
  bab:
 
19
  branching:
 
20
  reduceop: mean
cifar/sin_4fc_100/config.yaml CHANGED
@@ -2,14 +2,12 @@ general:
2
  root_path: ${CONFIG_PATH}
3
  csv_name: instances.csv
4
  loss_reduction_func: min
5
- sparse_alpha: false
6
  model:
7
  name: >-
8
  Customized("../models/sin.py", "sin_4fc_100")
9
  path: ${CONFIG_PATH}/model.pth
10
  input_shape: [-1, 3, 32, 32]
11
  solver:
12
- min_batch_size_ratio: 0
13
  batch_size: 800
14
  alpha-crown:
15
  iteration: 50
@@ -18,7 +16,5 @@ solver:
18
  lr_beta: 0.02
19
  iteration: 10
20
  bab:
21
- pruning_in_iteration: false # bug
22
  branching:
23
- method: nonlinear
24
- reduceop: mean
 
2
  root_path: ${CONFIG_PATH}
3
  csv_name: instances.csv
4
  loss_reduction_func: min
 
5
  model:
6
  name: >-
7
  Customized("../models/sin.py", "sin_4fc_100")
8
  path: ${CONFIG_PATH}/model.pth
9
  input_shape: [-1, 3, 32, 32]
10
  solver:
 
11
  batch_size: 800
12
  alpha-crown:
13
  iteration: 50
 
16
  lr_beta: 0.02
17
  iteration: 10
18
  bab:
 
19
  branching:
20
+ reduceop: mean
 
cifar/sin_4fc_200/config.yaml CHANGED
@@ -2,14 +2,12 @@ general:
2
  root_path: ${CONFIG_PATH}
3
  csv_name: instances.csv
4
  loss_reduction_func: min
5
- sparse_alpha: false
6
  model:
7
  name: >-
8
  Customized("../models/sin.py", "sin_4fc_200")
9
  path: ${CONFIG_PATH}/model.pth
10
  input_shape: [-1, 3, 32, 32]
11
  solver:
12
- min_batch_size_ratio: 0
13
  batch_size: 400
14
  alpha-crown:
15
  iteration: 50
@@ -18,7 +16,5 @@ solver:
18
  lr_beta: 0.02
19
  iteration: 10
20
  bab:
21
- pruning_in_iteration: false # bug
22
  branching:
23
- method: nonlinear
24
  reduceop: mean
 
2
  root_path: ${CONFIG_PATH}
3
  csv_name: instances.csv
4
  loss_reduction_func: min
 
5
  model:
6
  name: >-
7
  Customized("../models/sin.py", "sin_4fc_200")
8
  path: ${CONFIG_PATH}/model.pth
9
  input_shape: [-1, 3, 32, 32]
10
  solver:
 
11
  batch_size: 400
12
  alpha-crown:
13
  iteration: 50
 
16
  lr_beta: 0.02
17
  iteration: 10
18
  bab:
 
19
  branching:
 
20
  reduceop: mean
cifar/sin_4fc_500/config.yaml CHANGED
@@ -2,14 +2,12 @@ general:
2
  root_path: ${CONFIG_PATH}
3
  csv_name: instances.csv
4
  loss_reduction_func: min
5
- sparse_alpha: false
6
  model:
7
  name: >-
8
  Customized("../models/sin.py", "sin_4fc_500")
9
  path: ${CONFIG_PATH}/model.pth
10
  input_shape: [-1, 3, 32, 32]
11
  solver:
12
- min_batch_size_ratio: 0
13
  batch_size: 128
14
  alpha-crown:
15
  iteration: 50
@@ -18,7 +16,5 @@ solver:
18
  lr_beta: 0.02
19
  iteration: 10
20
  bab:
21
- pruning_in_iteration: false # bug
22
  branching:
23
- method: nonlinear
24
- reduceop: mean
 
2
  root_path: ${CONFIG_PATH}
3
  csv_name: instances.csv
4
  loss_reduction_func: min
 
5
  model:
6
  name: >-
7
  Customized("../models/sin.py", "sin_4fc_500")
8
  path: ${CONFIG_PATH}/model.pth
9
  input_shape: [-1, 3, 32, 32]
10
  solver:
 
11
  batch_size: 128
12
  alpha-crown:
13
  iteration: 50
 
16
  lr_beta: 0.02
17
  iteration: 10
18
  bab:
 
19
  branching:
20
+ reduceop: mean
 
cifar/tanh_4fc_100/config.yaml CHANGED
@@ -2,14 +2,12 @@ general:
2
  root_path: ${CONFIG_PATH}
3
  csv_name: instances.csv
4
  loss_reduction_func: min
5
- sparse_alpha: false
6
  model:
7
  name: >-
8
  Customized("../models/tanh.py", "tanh_4fc_100")
9
  path: ${CONFIG_PATH}/model.pth
10
  input_shape: [-1, 3, 32, 32]
11
  solver:
12
- min_batch_size_ratio: 0
13
  batch_size: 384
14
  alpha-crown:
15
  iteration: 50
@@ -18,7 +16,5 @@ solver:
18
  lr_beta: 0.1
19
  iteration: 50
20
  bab:
21
- pruning_in_iteration: false # bug
22
  branching:
23
- method: nonlinear
24
- reduceop: mean
 
2
  root_path: ${CONFIG_PATH}
3
  csv_name: instances.csv
4
  loss_reduction_func: min
 
5
  model:
6
  name: >-
7
  Customized("../models/tanh.py", "tanh_4fc_100")
8
  path: ${CONFIG_PATH}/model.pth
9
  input_shape: [-1, 3, 32, 32]
10
  solver:
 
11
  batch_size: 384
12
  alpha-crown:
13
  iteration: 50
 
16
  lr_beta: 0.1
17
  iteration: 50
18
  bab:
 
19
  branching:
20
+ reduceop: mean
 
cifar/tanh_6fc_100/config.yaml CHANGED
@@ -2,14 +2,12 @@ general:
2
  root_path: ${CONFIG_PATH}
3
  csv_name: instances.csv
4
  loss_reduction_func: min
5
- sparse_alpha: false
6
  model:
7
  name: >-
8
  Customized("../models/tanh.py", "tanh_6fc_100")
9
  path: ${CONFIG_PATH}/model.pth
10
  input_shape: [-1, 3, 32, 32]
11
  solver:
12
- min_batch_size_ratio: 0
13
  batch_size: 384
14
  alpha-crown:
15
  iteration: 50
@@ -18,7 +16,5 @@ solver:
18
  lr_beta: 0.1
19
  iteration: 50
20
  bab:
21
- pruning_in_iteration: false # bug
22
  branching:
23
- method: nonlinear
24
- reduceop: mean
 
2
  root_path: ${CONFIG_PATH}
3
  csv_name: instances.csv
4
  loss_reduction_func: min
 
5
  model:
6
  name: >-
7
  Customized("../models/tanh.py", "tanh_6fc_100")
8
  path: ${CONFIG_PATH}/model.pth
9
  input_shape: [-1, 3, 32, 32]
10
  solver:
 
11
  batch_size: 384
12
  alpha-crown:
13
  iteration: 50
 
16
  lr_beta: 0.1
17
  iteration: 50
18
  bab:
 
19
  branching:
20
+ reduceop: mean
 
cifar/vit_1_3/config.yaml CHANGED
@@ -11,14 +11,9 @@ model:
11
  path: ${CONFIG_PATH}/model.pth
12
  input_shape: [-1, 3, 32, 32]
13
  solver:
14
- min_batch_size_ratio: 0
15
  batch_size: 50
16
  alpha-crown:
17
  lr_alpha: 0.01
18
  iteration: 50
19
  beta-crown:
20
- iteration: 50
21
- bab:
22
- pruning_in_iteration: False
23
- branching:
24
- method: nonlinear
 
11
  path: ${CONFIG_PATH}/model.pth
12
  input_shape: [-1, 3, 32, 32]
13
  solver:
 
14
  batch_size: 50
15
  alpha-crown:
16
  lr_alpha: 0.01
17
  iteration: 50
18
  beta-crown:
19
+ iteration: 50
 
 
 
 
cifar/vit_1_6/config.yaml CHANGED
@@ -11,14 +11,9 @@ model:
11
  path: ${CONFIG_PATH}/model.pth
12
  input_shape: [-1, 3, 32, 32]
13
  solver:
14
- min_batch_size_ratio: 0
15
  batch_size: 25
16
  alpha-crown:
17
  lr_alpha: 0.01
18
  iteration: 50
19
  beta-crown:
20
- iteration: 50
21
- bab:
22
- pruning_in_iteration: False
23
- branching:
24
- method: nonlinear
 
11
  path: ${CONFIG_PATH}/model.pth
12
  input_shape: [-1, 3, 32, 32]
13
  solver:
 
14
  batch_size: 25
15
  alpha-crown:
16
  lr_alpha: 0.01
17
  iteration: 50
18
  beta-crown:
19
+ iteration: 50
 
 
 
 
cifar/vit_2_3/config.yaml CHANGED
@@ -11,14 +11,9 @@ model:
11
  path: ${CONFIG_PATH}/model.pth
12
  input_shape: [-1, 3, 32, 32]
13
  solver:
14
- min_batch_size_ratio: 0
15
  batch_size: 50
16
  alpha-crown:
17
  lr_alpha: 0.01
18
  iteration: 20
19
  beta-crown:
20
- iteration: 20
21
- bab:
22
- pruning_in_iteration: False
23
- branching:
24
- method: nonlinear
 
11
  path: ${CONFIG_PATH}/model.pth
12
  input_shape: [-1, 3, 32, 32]
13
  solver:
 
14
  batch_size: 50
15
  alpha-crown:
16
  lr_alpha: 0.01
17
  iteration: 20
18
  beta-crown:
19
+ iteration: 20
 
 
 
 
cifar/vit_2_6/config.yaml CHANGED
@@ -11,14 +11,9 @@ model:
11
  path: ${CONFIG_PATH}/model.pth
12
  input_shape: [-1, 3, 32, 32]
13
  solver:
14
- min_batch_size_ratio: 0
15
  batch_size: 25
16
  alpha-crown:
17
  lr_alpha: 0.01
18
  iteration: 20
19
  beta-crown:
20
- iteration: 20
21
- bab:
22
- pruning_in_iteration: False
23
- branching:
24
- method: nonlinear
 
11
  path: ${CONFIG_PATH}/model.pth
12
  input_shape: [-1, 3, 32, 32]
13
  solver:
 
14
  batch_size: 25
15
  alpha-crown:
16
  lr_alpha: 0.01
17
  iteration: 20
18
  beta-crown:
19
+ iteration: 20
 
 
 
 
eran/sigmoid_6_100/config.yaml CHANGED
@@ -1,6 +1,5 @@
1
  general:
2
  loss_reduction_func: min
3
- sparse_alpha: false
4
  model:
5
  onnx_path: ${CONFIG_PATH}/ffnnSIGMOID__Point_6x100.onnx
6
  input_shape: [-1, 1, 28, 28]
@@ -10,7 +9,6 @@ data:
10
  specification:
11
  epsilon: 0.015
12
  solver:
13
- min_batch_size_ratio: 0
14
  batch_size: 2048
15
  alpha-crown:
16
  iteration: 50
@@ -20,8 +18,6 @@ solver:
20
  iteration: 50
21
  bab:
22
  timeout: 300
23
- pruning_in_iteration: false
24
  branching:
25
- method: nonlinear
26
  nonlinear_split:
27
  loose_tanh_threshold: 5
 
1
  general:
2
  loss_reduction_func: min
 
3
  model:
4
  onnx_path: ${CONFIG_PATH}/ffnnSIGMOID__Point_6x100.onnx
5
  input_shape: [-1, 1, 28, 28]
 
9
  specification:
10
  epsilon: 0.015
11
  solver:
 
12
  batch_size: 2048
13
  alpha-crown:
14
  iteration: 50
 
18
  iteration: 50
19
  bab:
20
  timeout: 300
 
21
  branching:
 
22
  nonlinear_split:
23
  loose_tanh_threshold: 5
eran/sigmoid_6_200/config.yaml CHANGED
@@ -1,6 +1,5 @@
1
  general:
2
  loss_reduction_func: min
3
- sparse_alpha: false
4
  model:
5
  onnx_path: ${CONFIG_PATH}/ffnnSIGMOID__Point_6x200.onnx
6
  input_shape: [-1, 1, 28, 28]
@@ -10,7 +9,6 @@ data:
10
  specification:
11
  epsilon: 0.012
12
  solver:
13
- min_batch_size_ratio: 0
14
  batch_size: 1024
15
  early_stop_patience: 100
16
  alpha-crown:
@@ -21,8 +19,6 @@ solver:
21
  iteration: 25
22
  bab:
23
  timeout: 300
24
- pruning_in_iteration: false
25
  branching:
26
- method: nonlinear
27
  nonlinear_split:
28
  loose_tanh_threshold: 5
 
1
  general:
2
  loss_reduction_func: min
 
3
  model:
4
  onnx_path: ${CONFIG_PATH}/ffnnSIGMOID__Point_6x200.onnx
5
  input_shape: [-1, 1, 28, 28]
 
9
  specification:
10
  epsilon: 0.012
11
  solver:
 
12
  batch_size: 1024
13
  early_stop_patience: 100
14
  alpha-crown:
 
19
  iteration: 25
20
  bab:
21
  timeout: 300
 
22
  branching:
 
23
  nonlinear_split:
24
  loose_tanh_threshold: 5
eran/sigmoid_9_100/config.yaml CHANGED
@@ -1,6 +1,5 @@
1
  general:
2
  loss_reduction_func: min
3
- sparse_alpha: false
4
  model:
5
  onnx_path: ${CONFIG_PATH}/ffnnSIGMOID__Point_9x100.onnx
6
  input_shape: [-1, 1, 28, 28]
@@ -10,7 +9,6 @@ data:
10
  specification:
11
  epsilon: 0.015
12
  solver:
13
- min_batch_size_ratio: 0
14
  batch_size: 2048
15
  early_stop_patience: 100
16
  alpha-crown:
@@ -21,8 +19,6 @@ solver:
21
  iteration: 25
22
  bab:
23
  timeout: 300
24
- pruning_in_iteration: false
25
  branching:
26
- method: nonlinear
27
  nonlinear_split:
28
  loose_tanh_threshold: 5
 
1
  general:
2
  loss_reduction_func: min
 
3
  model:
4
  onnx_path: ${CONFIG_PATH}/ffnnSIGMOID__Point_9x100.onnx
5
  input_shape: [-1, 1, 28, 28]
 
9
  specification:
10
  epsilon: 0.015
11
  solver:
 
12
  batch_size: 2048
13
  early_stop_patience: 100
14
  alpha-crown:
 
19
  iteration: 25
20
  bab:
21
  timeout: 300
 
22
  branching:
 
23
  nonlinear_split:
24
  loose_tanh_threshold: 5
eran/sigmoid_conv_small/config.yaml CHANGED
@@ -1,6 +1,5 @@
1
  general:
2
  loss_reduction_func: min
3
- sparse_alpha: false
4
  model:
5
  onnx_path: ${CONFIG_PATH}/convSmallSIGMOID__Point.onnx
6
  input_shape: [-1, 1, 28, 28]
@@ -10,7 +9,6 @@ data:
10
  specification:
11
  epsilon: 0.014
12
  solver:
13
- min_batch_size_ratio: 0
14
  batch_size: 64
15
  early_stop_patience: 100
16
  alpha-crown:
@@ -21,8 +19,6 @@ solver:
21
  iteration: 25
22
  bab:
23
  timeout: 300
24
- pruning_in_iteration: false
25
  branching:
26
- method: nonlinear
27
  nonlinear_split:
28
  loose_tanh_threshold: 5
 
1
  general:
2
  loss_reduction_func: min
 
3
  model:
4
  onnx_path: ${CONFIG_PATH}/convSmallSIGMOID__Point.onnx
5
  input_shape: [-1, 1, 28, 28]
 
9
  specification:
10
  epsilon: 0.014
11
  solver:
 
12
  batch_size: 64
13
  early_stop_patience: 100
14
  alpha-crown:
 
19
  iteration: 25
20
  bab:
21
  timeout: 300
 
22
  branching:
 
23
  nonlinear_split:
24
  loose_tanh_threshold: 5
eran/tanh_6_100/config.yaml CHANGED
@@ -1,6 +1,5 @@
1
  general:
2
  loss_reduction_func: min
3
- sparse_alpha: false
4
  model:
5
  onnx_path: ${CONFIG_PATH}/ffnnTANH__Point_6x100.onnx
6
  input_shape: [-1, 1, 28, 28]
@@ -10,7 +9,6 @@ data:
10
  specification:
11
  epsilon: 0.006
12
  solver:
13
- min_batch_size_ratio: 0
14
  batch_size: 2048
15
  early_stop_patience: 100
16
  alpha-crown:
@@ -21,8 +19,6 @@ solver:
21
  iteration: 25
22
  bab:
23
  timeout: 300
24
- pruning_in_iteration: false
25
  branching:
26
- method: nonlinear
27
  nonlinear_split:
28
  loose_tanh_threshold: 2
 
1
  general:
2
  loss_reduction_func: min
 
3
  model:
4
  onnx_path: ${CONFIG_PATH}/ffnnTANH__Point_6x100.onnx
5
  input_shape: [-1, 1, 28, 28]
 
9
  specification:
10
  epsilon: 0.006
11
  solver:
 
12
  batch_size: 2048
13
  early_stop_patience: 100
14
  alpha-crown:
 
19
  iteration: 25
20
  bab:
21
  timeout: 300
 
22
  branching:
 
23
  nonlinear_split:
24
  loose_tanh_threshold: 2
eran/tanh_6_200/config.yaml CHANGED
@@ -1,6 +1,5 @@
1
  general:
2
  loss_reduction_func: min
3
- sparse_alpha: false
4
  model:
5
  onnx_path: ${CONFIG_PATH}/ffnnTANH__Point_6x200.onnx
6
  input_shape: [-1, 1, 28, 28]
@@ -20,8 +19,6 @@ solver:
20
  iteration: 25
21
  bab:
22
  timeout: 300
23
- pruning_in_iteration: false
24
  branching:
25
- method: nonlinear
26
  nonlinear_split:
27
  loose_tanh_threshold: 2
 
1
  general:
2
  loss_reduction_func: min
 
3
  model:
4
  onnx_path: ${CONFIG_PATH}/ffnnTANH__Point_6x200.onnx
5
  input_shape: [-1, 1, 28, 28]
 
19
  iteration: 25
20
  bab:
21
  timeout: 300
 
22
  branching:
 
23
  nonlinear_split:
24
  loose_tanh_threshold: 2
eran/tanh_9_100/config.yaml CHANGED
@@ -1,6 +1,5 @@
1
  general:
2
  loss_reduction_func: min
3
- sparse_alpha: false
4
  model:
5
  onnx_path: ${CONFIG_PATH}/ffnnTANH__Point_9x100.onnx
6
  input_shape: [-1, 1, 28, 28]
@@ -10,7 +9,6 @@ data:
10
  specification:
11
  epsilon: 0.006
12
  solver:
13
- min_batch_size_ratio: 0
14
  batch_size: 2048
15
  early_stop_patience: 100
16
  alpha-crown:
@@ -21,8 +19,6 @@ solver:
21
  iteration: 25
22
  bab:
23
  timeout: 300
24
- pruning_in_iteration: false
25
  branching:
26
- method: nonlinear
27
  nonlinear_split:
28
  loose_tanh_threshold: 2
 
1
  general:
2
  loss_reduction_func: min
 
3
  model:
4
  onnx_path: ${CONFIG_PATH}/ffnnTANH__Point_9x100.onnx
5
  input_shape: [-1, 1, 28, 28]
 
9
  specification:
10
  epsilon: 0.006
11
  solver:
 
12
  batch_size: 2048
13
  early_stop_patience: 100
14
  alpha-crown:
 
19
  iteration: 25
20
  bab:
21
  timeout: 300
 
22
  branching:
 
23
  nonlinear_split:
24
  loose_tanh_threshold: 2
eran/tanh_conv_small/config.yaml CHANGED
@@ -1,6 +1,5 @@
1
  general:
2
  loss_reduction_func: min
3
- sparse_alpha: false
4
  model:
5
  onnx_path: ${CONFIG_PATH}/convSmallTANH__Point.onnx
6
  input_shape: [-1, 1, 28, 28]
@@ -10,7 +9,6 @@ data:
10
  specification:
11
  epsilon: 0.005
12
  solver:
13
- min_batch_size_ratio: 0
14
  batch_size: 64
15
  early_stop_patience: 100
16
  alpha-crown:
@@ -21,8 +19,6 @@ solver:
21
  iteration: 25
22
  bab:
23
  timeout: 300
24
- pruning_in_iteration: false
25
  branching:
26
- method: nonlinear
27
  nonlinear_split:
28
  loose_tanh_threshold: 2
 
1
  general:
2
  loss_reduction_func: min
 
3
  model:
4
  onnx_path: ${CONFIG_PATH}/convSmallTANH__Point.onnx
5
  input_shape: [-1, 1, 28, 28]
 
9
  specification:
10
  epsilon: 0.005
11
  solver:
 
12
  batch_size: 64
13
  early_stop_patience: 100
14
  alpha-crown:
 
19
  iteration: 25
20
  bab:
21
  timeout: 300
 
22
  branching:
 
23
  nonlinear_split:
24
  loose_tanh_threshold: 2
ml4acopf/config.yaml CHANGED
@@ -1,8 +1,6 @@
1
  general:
2
  root_path: ${CONFIG_PATH}
3
  csv_name: instances.csv
4
- sparse_alpha: false
5
- sparse_interm: false
6
  verify_onnxruntime_output: True
7
  model:
8
  onnx_optimization_flags: ["remove_matmul_inplace"]
@@ -11,7 +9,6 @@ attack:
11
  attack_tolerance: 0.0001
12
  solver:
13
  batch_size: 128
14
- min_batch_size_ratio: 0.0
15
  early_stop_patience: 200
16
  alpha-crown:
17
  lr_alpha: 0.2
@@ -22,9 +19,7 @@ solver:
22
  lr_beta: 0.5
23
  iteration: 50
24
  bab:
25
- pruning_in_iteration: false
26
  branching:
27
- method: nonlinear
28
  candidates: 200
29
  nonlinear_split:
30
  filter: true
 
1
  general:
2
  root_path: ${CONFIG_PATH}
3
  csv_name: instances.csv
 
 
4
  verify_onnxruntime_output: True
5
  model:
6
  onnx_optimization_flags: ["remove_matmul_inplace"]
 
9
  attack_tolerance: 0.0001
10
  solver:
11
  batch_size: 128
 
12
  early_stop_patience: 200
13
  alpha-crown:
14
  lr_alpha: 0.2
 
19
  lr_beta: 0.5
20
  iteration: 50
21
  bab:
 
22
  branching:
 
23
  candidates: 200
24
  nonlinear_split:
25
  filter: true
prover/mnist_lstm_7_32_1/config.yaml CHANGED
@@ -1,8 +1,7 @@
1
  general:
2
  csv_name: instances.csv
3
  loss_reduction_func: min
4
- sparse_alpha: false
5
- sparse_interm: false
6
  root_path: ${CONFIG_PATH}
7
  model:
8
  name: >-
@@ -10,7 +9,6 @@ model:
10
  path: ${CONFIG_PATH}/model.pth
11
  input_shape: [-1, 1, 28, 28]
12
  solver:
13
- min_batch_size_ratio: 0
14
  batch_size: 2048
15
  alpha-crown:
16
  iteration: 20
@@ -18,8 +16,4 @@ solver:
18
  beta-crown:
19
  lr_alpha: 0.1
20
  lr_beta: 0.1
21
- iteration: 50
22
- bab:
23
- pruning_in_iteration: false # bug
24
- branching:
25
- method: nonlinear
 
1
  general:
2
  csv_name: instances.csv
3
  loss_reduction_func: min
4
+ conv_mode: matrix
 
5
  root_path: ${CONFIG_PATH}
6
  model:
7
  name: >-
 
9
  path: ${CONFIG_PATH}/model.pth
10
  input_shape: [-1, 1, 28, 28]
11
  solver:
 
12
  batch_size: 2048
13
  alpha-crown:
14
  iteration: 20
 
16
  beta-crown:
17
  lr_alpha: 0.1
18
  lr_beta: 0.1
19
+ iteration: 50