|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
import math |
|
from torch import Tensor |
|
|
|
|
|
class Reduce(nn.Module): |
|
def forward(self, x): |
|
return x.mean(dim=1) |
|
|
|
|
|
class PatchEmbedding(nn.Module): |
|
def __init__(self, in_channels: int = 3, patch_size: int = 16, emb_size: int = 768, img_size: int = 224): |
|
self.patch_size = patch_size |
|
super().__init__() |
|
self.projection = nn.Conv2d(in_channels, emb_size, kernel_size=patch_size, stride=patch_size) |
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, emb_size)) |
|
self.positions = nn.Parameter(torch.zeros((img_size // patch_size) * (img_size // patch_size) + 1, emb_size)) |
|
|
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
b, _, _, _ = x.shape |
|
x = self.projection(x) |
|
x = x.flatten(2).transpose(1, 2) |
|
cls_tokens = self.cls_token.expand(b, -1, -1) |
|
|
|
x = torch.cat([cls_tokens, x], dim=1) |
|
|
|
x += self.positions |
|
return x |
|
|
|
|
|
class MultiHeadAttention(nn.Module): |
|
def __init__(self, d_model = 123, num_heads = 6, dropout = 0.): |
|
super().__init__() |
|
assert d_model % num_heads == 0, "d_model must be divisible by num_heads" |
|
|
|
self.d_model = d_model |
|
self.num_heads = num_heads |
|
self.head_dim = d_model // num_heads |
|
|
|
self.query = nn.Linear(d_model, d_model) |
|
self.key = nn.Linear(d_model, d_model) |
|
self.value = nn.Linear(d_model, d_model) |
|
self.out = nn.Linear(d_model, d_model) |
|
|
|
self.dropout = nn.Dropout(dropout) |
|
|
|
def split_heads(self, x, batch_size): |
|
x = x.view(batch_size, -1, self.num_heads, self.head_dim) |
|
return x.transpose(1, 2) |
|
|
|
def forward(self, x): |
|
batch_size = x.size(0) |
|
|
|
query = self.query(x) |
|
key = self.key(x) |
|
value = self.value(x) |
|
|
|
query = self.split_heads(query, batch_size) |
|
key = self.split_heads(key, batch_size) |
|
value = self.split_heads(value, batch_size) |
|
|
|
scores = torch.matmul(query, key.transpose(-2, -1)) |
|
scores = scores / 8 |
|
|
|
attn_weights = F.softmax(scores, dim=-1) |
|
attn_weights = self.dropout(attn_weights) |
|
|
|
attn_output = torch.matmul(attn_weights, value) |
|
attn_output = attn_output.transpose(1, 2).contiguous().view(batch_size, -1, self.d_model) |
|
attn_output = self.out(attn_output) |
|
|
|
return attn_output |
|
|
|
|
|
class ResidualAdd(nn.Module): |
|
def __init__(self, fn): |
|
super().__init__() |
|
self.fn = fn |
|
|
|
def forward(self, x, **kwargs): |
|
res = x |
|
x = self.fn(x, **kwargs) |
|
x += res |
|
return x |
|
|
|
|
|
class FeedForwardBlock(nn.Sequential): |
|
def __init__(self, emb_size: int, expansion: int = 2, drop_p: float = 0.): |
|
super().__init__( |
|
nn.Linear(emb_size, expansion * emb_size), |
|
nn.ReLU(), |
|
nn.Dropout(drop_p), |
|
nn.Linear(expansion * emb_size, emb_size), |
|
) |
|
|
|
|
|
class TransformerEncoderBlock(nn.Sequential): |
|
def __init__(self, |
|
emb_size: int = 768, |
|
drop_p: float = 0., |
|
forward_expansion: int = 2, |
|
forward_drop_p: float = 0., |
|
** kwargs): |
|
super().__init__( |
|
ResidualAdd(nn.Sequential( |
|
nn.LayerNorm(emb_size), |
|
MultiHeadAttention(emb_size, **kwargs), |
|
nn.Dropout(drop_p) |
|
)), |
|
ResidualAdd(nn.Sequential( |
|
nn.LayerNorm(emb_size), |
|
FeedForwardBlock( |
|
emb_size, expansion=forward_expansion, drop_p=forward_drop_p), |
|
nn.Dropout(drop_p) |
|
) |
|
)) |
|
|
|
|
|
class TransformerEncoder(nn.Sequential): |
|
def __init__(self, depth: int = 1, **kwargs): |
|
super().__init__(*[TransformerEncoderBlock(**kwargs) for _ in range(depth)]) |
|
|
|
|
|
class ClassificationHead(nn.Sequential): |
|
def __init__(self, emb_size: int = 768, n_classes: int = 1000): |
|
super().__init__( |
|
Reduce(), |
|
nn.LayerNorm(emb_size), |
|
nn.Linear(emb_size, n_classes)) |
|
|
|
|
|
class ViT_1_3(nn.Sequential): |
|
def __init__(self, |
|
in_channels: int = 3, |
|
num_heads: int = 3, |
|
patch_size: int = 16, |
|
emb_size: int = 48, |
|
img_size: int = 32, |
|
depth: int = 1, |
|
n_classes: int = 10, |
|
**kwargs): |
|
super().__init__( |
|
PatchEmbedding(in_channels, patch_size, emb_size, img_size), |
|
TransformerEncoder(depth, emb_size=emb_size, num_heads=num_heads, **kwargs), |
|
ClassificationHead(emb_size, n_classes) |
|
) |
|
|
|
|
|
class ViT_1_6(nn.Sequential): |
|
def __init__(self, |
|
in_channels: int = 3, |
|
num_heads: int = 6, |
|
patch_size: int = 16, |
|
emb_size: int = 96, |
|
img_size: int = 32, |
|
depth: int = 1, |
|
n_classes: int = 10, |
|
**kwargs): |
|
super().__init__( |
|
PatchEmbedding(in_channels, patch_size, emb_size, img_size), |
|
TransformerEncoder(depth, emb_size=emb_size, num_heads=num_heads, **kwargs), |
|
ClassificationHead(emb_size, n_classes) |
|
) |
|
|
|
|
|
class ViT_2_3(nn.Sequential): |
|
def __init__(self, |
|
in_channels: int = 3, |
|
num_heads: int = 3, |
|
patch_size: int = 16, |
|
emb_size: int = 48, |
|
img_size: int = 32, |
|
depth: int = 2, |
|
n_classes: int = 10, |
|
**kwargs): |
|
super().__init__( |
|
PatchEmbedding(in_channels, patch_size, emb_size, img_size), |
|
TransformerEncoder(depth, emb_size=emb_size, num_heads=num_heads, **kwargs), |
|
ClassificationHead(emb_size, n_classes) |
|
) |
|
|
|
|
|
class ViT_2_6(nn.Sequential): |
|
def __init__(self, |
|
in_channels: int = 3, |
|
num_heads: int = 6, |
|
patch_size: int = 16, |
|
emb_size: int = 48, |
|
img_size: int = 32, |
|
depth: int = 2, |
|
n_classes: int = 10, |
|
**kwargs): |
|
super().__init__( |
|
PatchEmbedding(in_channels, patch_size, emb_size, img_size), |
|
TransformerEncoder(depth, emb_size=emb_size, num_heads=num_heads, **kwargs), |
|
ClassificationHead(emb_size, n_classes) |
|
) |