import torch.nn as nn | |
def tanh_fc(in_ch=3, in_dim=32, width=100, depth=4, num_classes=10): | |
layers = [nn.Flatten(), nn.Linear(in_ch*in_dim**2, width), nn.Tanh()] | |
for _ in range(depth - 1): | |
layers.extend([nn.Linear(width, width), nn.Tanh()]) | |
layers.append(nn.Linear(width, num_classes)) | |
return nn.Sequential(*layers) | |
def tanh_4fc_100(in_ch=3, in_dim=32): | |
return tanh_fc(in_ch, in_dim, width=100, depth=4) | |
def tanh_6fc_100(in_ch=3, in_dim=32): | |
return tanh_fc(in_ch, in_dim, width=100, depth=6) | |