|
import torch |
|
import torch.nn as nn |
|
|
|
|
|
class LSTM(nn.Module): |
|
def __init__(self, in_channels=3, width=100, patch_size=8, num_classes=10): |
|
super().__init__() |
|
|
|
self.patch_size = patch_size |
|
self.width = width |
|
self.num_classes = num_classes |
|
|
|
self.projection = nn.Conv2d( |
|
in_channels, width, kernel_size=patch_size, stride=patch_size) |
|
self.cell_f = nn.LSTMCell(width, width) |
|
self.fc = nn.Linear(width, num_classes) |
|
|
|
def forward(self, x): |
|
embed = self.projection(x) |
|
embed = torch.flatten(embed, 2).permute(0, 2, 1) |
|
h_f = torch.zeros(x.shape[0], self.width, device=x.device) |
|
c_f = h_f.clone() |
|
for i in range(embed.shape[1]): |
|
h_f, c_f = self.cell_f(embed[:, i], (h_f, c_f)) |
|
logits = self.fc(h_f) |
|
return logits |
|
|
|
|
|
def LSTM_patch_16_32(in_ch=3, in_dim=32): |
|
assert in_ch == 3 and in_dim == 32 |
|
return LSTM(width=32, patch_size=16) |
|
|
|
def LSTM_patch_16_64(in_ch=3, in_dim=32): |
|
assert in_ch == 3 and in_dim == 32 |
|
return LSTM(width=64, patch_size=16) |
|
|