File size: 4,814 Bytes
89cb937
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 80,
   "id": "ecebe95b",
   "metadata": {},
   "outputs": [],
   "source": [
    "import librosa\n",
    "import os\n",
    "import soundfile as sf"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 89,
   "id": "ca1d6ddb",
   "metadata": {},
   "outputs": [],
   "source": [
    "def splitWAVFile(file_path, short_name, step, folder_path):\n",
    "    # Load the audio file\n",
    "    audio, sr = librosa.load(file_path, sr=None)\n",
    "    \n",
    "    # Calculate the number of samples per segment\n",
    "    samples_per_segment = int(step * sr)\n",
    "    total_segments = len(audio) // samples_per_segment\n",
    "    \n",
    "    if not os.path.exists(folder_path):\n",
    "        os.makedirs(folder_path)\n",
    "    \n",
    "    if(len(audio)<samples_per_segment):\n",
    "        print(drop)\n",
    "        return\n",
    "    \n",
    "    for i in range(total_segments):\n",
    "        start_sample = i * samples_per_segment\n",
    "        end_sample = start_sample + samples_per_segment\n",
    "        \n",
    "        # Extract the segment\n",
    "        segment = audio[start_sample:end_sample]\n",
    "        \n",
    "        output_path = folder_path+\"/\"+short_name+\"_\"+str(i)+\".wav\"\n",
    "        sf.write(output_path, segment, sr)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 90,
   "id": "ad236328",
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n",
      "0\n"
     ]
    }
   ],
   "source": [
    "nocNoise_folder = \"/Users/lainiecederholm/bat data/Noctula nyctalus with noise\"\n",
    "nocNoNoise_folder = \"/Users/lainiecederholm/bat data/Noctula nyctalus with out social sound and noise\"\n",
    "pipNoise_folder = \"/Users/lainiecederholm/bat data/Pipistrellus pygmaus with social sound\"\n",
    "pipNoNoise_folder = \"/Users/lainiecederholm/bat data/Pipistrellus pygmaus without social sound\"\n",
    "\n",
    "\n",
    "for file in os.listdir(nocNoise_folder):\n",
    "    if (file.endswith(\".wav\")):\n",
    "        file_path = \"/Users/lainiecederholm/bat data/Noctula nyctalus with noise/\"+file\n",
    "        splitWAVFile(file_path, file, 2, \"/Users/lainiecederholm/bat data/Noctula with Noise Crop\")\n",
    "    \n",
    "for file in os.listdir(nocNoNoise_folder):\n",
    "    if (file.endswith(\".wav\")):\n",
    "        file_path = \"/Users/lainiecederholm/bat data/Noctula nyctalus with out social sound and noise/\"+file\n",
    "        splitWAVFile(file_path, file, 2, \"/Users/lainiecederholm/bat data/Noctula without Noise Crop\")\n",
    "\n",
    "for file in os.listdir(pipNoise_folder):\n",
    "    if (file.endswith(\".wav\")):\n",
    "        file_path = \"/Users/lainiecederholm/bat data/Pipistrellus pygmaus with social sound/\"+file\n",
    "        splitWAVFile(file_path, file, 2, \"/Users/lainiecederholm/bat data/Pipistrellus with Noise Crop\")\n",
    "    \n",
    "for file in os.listdir(pipNoNoise_folder):\n",
    "    if (file.endswith(\".wav\")):\n",
    "        file_path = \"/Users/lainiecederholm/bat data/Pipistrellus pygmaus without social sound/\"+file\n",
    "        splitWAVFile(file_path, file, 2, \"/Users/lainiecederholm/bat data/Pipistrellus without Noise Crop\")\n",
    "print(drop)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "3fc56932",
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}