File size: 4,814 Bytes
89cb937 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 80,
"id": "ecebe95b",
"metadata": {},
"outputs": [],
"source": [
"import librosa\n",
"import os\n",
"import soundfile as sf"
]
},
{
"cell_type": "code",
"execution_count": 89,
"id": "ca1d6ddb",
"metadata": {},
"outputs": [],
"source": [
"def splitWAVFile(file_path, short_name, step, folder_path):\n",
" # Load the audio file\n",
" audio, sr = librosa.load(file_path, sr=None)\n",
" \n",
" # Calculate the number of samples per segment\n",
" samples_per_segment = int(step * sr)\n",
" total_segments = len(audio) // samples_per_segment\n",
" \n",
" if not os.path.exists(folder_path):\n",
" os.makedirs(folder_path)\n",
" \n",
" if(len(audio)<samples_per_segment):\n",
" print(drop)\n",
" return\n",
" \n",
" for i in range(total_segments):\n",
" start_sample = i * samples_per_segment\n",
" end_sample = start_sample + samples_per_segment\n",
" \n",
" # Extract the segment\n",
" segment = audio[start_sample:end_sample]\n",
" \n",
" output_path = folder_path+\"/\"+short_name+\"_\"+str(i)+\".wav\"\n",
" sf.write(output_path, segment, sr)"
]
},
{
"cell_type": "code",
"execution_count": 90,
"id": "ad236328",
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n",
"0\n"
]
}
],
"source": [
"nocNoise_folder = \"/Users/lainiecederholm/bat data/Noctula nyctalus with noise\"\n",
"nocNoNoise_folder = \"/Users/lainiecederholm/bat data/Noctula nyctalus with out social sound and noise\"\n",
"pipNoise_folder = \"/Users/lainiecederholm/bat data/Pipistrellus pygmaus with social sound\"\n",
"pipNoNoise_folder = \"/Users/lainiecederholm/bat data/Pipistrellus pygmaus without social sound\"\n",
"\n",
"\n",
"for file in os.listdir(nocNoise_folder):\n",
" if (file.endswith(\".wav\")):\n",
" file_path = \"/Users/lainiecederholm/bat data/Noctula nyctalus with noise/\"+file\n",
" splitWAVFile(file_path, file, 2, \"/Users/lainiecederholm/bat data/Noctula with Noise Crop\")\n",
" \n",
"for file in os.listdir(nocNoNoise_folder):\n",
" if (file.endswith(\".wav\")):\n",
" file_path = \"/Users/lainiecederholm/bat data/Noctula nyctalus with out social sound and noise/\"+file\n",
" splitWAVFile(file_path, file, 2, \"/Users/lainiecederholm/bat data/Noctula without Noise Crop\")\n",
"\n",
"for file in os.listdir(pipNoise_folder):\n",
" if (file.endswith(\".wav\")):\n",
" file_path = \"/Users/lainiecederholm/bat data/Pipistrellus pygmaus with social sound/\"+file\n",
" splitWAVFile(file_path, file, 2, \"/Users/lainiecederholm/bat data/Pipistrellus with Noise Crop\")\n",
" \n",
"for file in os.listdir(pipNoNoise_folder):\n",
" if (file.endswith(\".wav\")):\n",
" file_path = \"/Users/lainiecederholm/bat data/Pipistrellus pygmaus without social sound/\"+file\n",
" splitWAVFile(file_path, file, 2, \"/Users/lainiecederholm/bat data/Pipistrellus without Noise Crop\")\n",
"print(drop)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3fc56932",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.4"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
|