Datasets:
File size: 5,008 Bytes
e1bd485 71fc210 113bc1b 5ad2ae3 113bc1b a4628cc 113bc1b a4628cc 82c5e1e e1bd485 2e40644 66c5583 7599276 a2d41f3 7599276 2e40644 66c5583 a2d41f3 66c5583 a2d41f3 3c03d56 a2d41f3 66c5583 a2d41f3 66c5583 2e40644 66c5583 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
---
task_categories:
- image-segmentation
- mask-generation
language:
- en
license: cc-by-4.0
dataset_info:
features:
- name: image
dtype: image
configs:
- config_name: example_images
data_files:
- split: group_1
path:
- metadata.csv
- "group_1/*.png"
- split: group_2
path:
- metadata.csv
- "group_2/*.png"
- split: group_3
path:
- metadata.csv
- "group_3/*.png"
- split: group_4
path:
- metadata.csv
- "group_4/*.png"
- split: group_5
path:
- metadata.csv
- "group_5/*.png"
- split: group_6
path:
- metadata.csv
- "group_6/*.png"
- split: group_7
path:
- metadata.csv
- "group_7/*.png"
- split: group_8
path:
- metadata.csv
- "group_8/*.png"
- split: group_9
path:
- metadata.csv
- "group_9/*.png"
- split: group_10
path:
- metadata.csv
- "group_10/*.png"
- split: group_11
path:
- metadata.csv
- "group_11/*.png"
- split: group_12
path:
- metadata.csv
- "group_12/*.png"
- split: group_13
path:
- metadata.csv
- "group_13/*.png"
- split: group_14
path:
- metadata.csv
- "group_14/*.png"
- split: group_15
path:
- metadata.csv
- "group_15/*.png"
- split: group_16
path:
- metadata.csv
- "group_16/*.png"
- split: group_17
path:
- metadata.csv
- "group_17/*.png"
- split: group_18
path:
- metadata.csv
- "group_18/*.png"
- split: group_19
path:
- metadata.csv
- "group_19/*.png"
- split: group_20
path:
- metadata.csv
- "group_20/*.png"
- split: group_21
path:
- metadata.csv
- "group_21/*.png"
- split: group_22
path:
- metadata.csv
- "group_22/*.png"
- split: group_23
path:
- metadata.csv
- "group_23/*.png"
- split: group_24
path:
- metadata.csv
- "group_24/*.png"
- split: group_25
path:
- metadata.csv
- "group_25/*.png"
---
The **AUTOFISH** dataset comprises 1500 high-quality images of fish on a conveyor belt. It features 454 unique fish with class labels, IDs, manual length measurements,
and a total of 18,160 instance segmentation masks.
The fish are partitioned into 25 groups, with 14 to 24 fish in each group. Each fish only appears in one group, making it easy to create training splits. The
number of fish and distribution of species in each group were pseudo-randomly selected to mimic real-world scenarios.
Every group is partitioned into three subsets: *Set1*, *Set2*, and *All*. *Set1* and *Set2* contain half of the fish each, and none of the
fish overlap or touch each other. *All* contains all the fish from the group, purposely placed in positions with high overlap. Every group directory contains 20 images for
each set, where variation is introduced by changing the position and orientation of the fish. Exactly half of every set is with the fish on their one side, while the other
half has the fish flipped.
<p float="left">
<img src="example_images/1083.png" />
<img src="example_images/81.png"/>
<img src="example_images/298.png" />
<img src="example_images/765.png" />
<em>Example images from the dataset with overlayed annotations.</em>
</p>
The available classes are:
- Cod
- Haddock
- Whiting
- Hake
- Horse mackerel
- Other
Other information contained in the annotations:
- Segmentation masks
- Bounding boxes
- Lengths
- Unique fish IDs
- 'Side up' referring to the side of the fish that is visible
In addition to all the labeled data, two high-overlap
unlabeled groups, as well as camera calibration images are included.
You can load this dataset with a default split configuration using the datasets library
```python
dataset = datasets.load_dataset('vapaau/autofish', revision='script', trust_remote_code=True)
```
If you use this dataset for your work, please cite:
```yaml
Citation coming soon
```
<!-- The annotations are in COCO format, with a structure as per the following example: -->
<!-- ```yaml
{
"images": [
{
"height": 2056,
"width": 2464,
"id": 1,
"file_name": "group_1/00001.png",
"group": 1,
},
...
],
"annotations": [
{
"iscrowd": 0,
"image_id": 1,
"bbox": [],
"segmentation": []
"category_id": 0,
"length": 35.5,
"fish_id": 316,
"side_up": "R",
"id": 1,
"area": 92164
},
...
],
"categories": [
{
"id": 0,
"name": "horse_mackerel",
"supercategory": "horse_mackerel"
},
...
],
} --> |