import pandas as pd import xarray as xr from glob import glob from typing import Optional, List def extract_region_id(filepath: str) -> str: """Extract region ID from netCDF file attributes.""" ds = xr.open_dataset(filepath) original_id = ds.attrs.get('original_id', '') ice_service = ds.attrs.get('ice_service', '') ds.close() parts = original_id.split('_') if ice_service == "dmi": return parts[-2] + "_" + parts[-1].split('.')[0] return parts[-4] def load_split_data(splits: List[str]) -> pd.DataFrame: """Load and preprocess data from split directories.""" dfs = [] for split in splits: paths = glob(f"{split}/*.nc") split_df = pd.DataFrame(paths, columns=["path"]) split_df["split"] = split dfs.append(split_df) df = pd.concat(dfs, ignore_index=True) df['date'] = pd.to_datetime(df['path'].str.extract(r'(\d{8}T\d{6})')[0], format='%Y%m%dT%H%M%S') df['ice_service'] = df['path'].str.extract(r'_(dmi|cis)_')[0] df['is_reference'] = df['path'].str.contains('reference') return df def process_test_data(test_data: pd.DataFrame) -> pd.DataFrame: """Process test split data to pair inputs with references.""" test_pairs = [] for (date, ice_service), group in test_data.groupby(['date', 'ice_service']): input_file = group[~group['is_reference']]['path'].iloc[0] ref_file = group[group['is_reference']]['path'].iloc[0] test_pairs.append({ 'input_path': input_file, 'reference_path': ref_file, 'date': date, 'ice_service': ice_service, 'split': 'test' }) return pd.DataFrame(test_pairs) def create_summary_df() -> pd.DataFrame: """Create summary DataFrame with all samples.""" splits = ["train", "test"] df = load_split_data(splits) # Process train data train_data = df[df['split'] == 'train'].copy() train_data['input_path'] = train_data['path'] train_data['reference_path'] = None # Process test data test_data = process_test_data(df[df['split'] == 'test']) # Combine and add region IDs summary_df = pd.concat([ train_data[['input_path', 'reference_path', 'date', 'ice_service', 'split']], test_data ]) summary_df['region_id'] = summary_df['input_path'].apply(extract_region_id) return summary_df def main(): """Main function to generate metadata summary.""" summary_df = create_summary_df() print("\nFinal Summary:") print(summary_df) if __name__ == '__main__': main()