tfnn commited on
Commit
2210177
·
verified ·
1 Parent(s): 75c4097

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +2 -1
README.md CHANGED
@@ -109,4 +109,5 @@ More about this type of network topology can be read here: https://gist.github.c
109
 
110
  ## Updates
111
  * A new dataset has been generated [HeadsNet-2-6_v2.7z](https://huggingface.co/datasets/tfnn/HeadsNet/resolve/main/HeadsNet-2-6_v2.7z?download=true), the old one uses a 10,242 vertex unit icosphere and the new one uses a 655,362 vertex unit icosphere, this should lead to a higher quality network. Start training with it instantly using [HeadsNet_v2_Trainer_with_Dataset.7z](https://huggingface.co/datasets/tfnn/HeadsNet/resolve/main/HeadsNet_v2_Trainer_with_Dataset.7z?download=true).
112
- * The system didn't work out, here I have trained models of various qualities: [HeadsNet_Trained_Models.7z](https://huggingface.co/datasets/tfnn/HeadsNet/resolve/main/HeadsNet_Trained_Models.7z?download=true). The network has some potential, with a better refined dataset and better network topology it could prove more successful.
 
 
109
 
110
  ## Updates
111
  * A new dataset has been generated [HeadsNet-2-6_v2.7z](https://huggingface.co/datasets/tfnn/HeadsNet/resolve/main/HeadsNet-2-6_v2.7z?download=true), the old one uses a 10,242 vertex unit icosphere and the new one uses a 655,362 vertex unit icosphere, this should lead to a higher quality network. Start training with it instantly using [HeadsNet_v2_Trainer_with_Dataset.7z](https://huggingface.co/datasets/tfnn/HeadsNet/resolve/main/HeadsNet_v2_Trainer_with_Dataset.7z?download=true).
112
+ * The system didn't work out, here I have trained models of various qualities: [HeadsNet_Trained_Models.7z](https://huggingface.co/datasets/tfnn/HeadsNet/resolve/main/HeadsNet_Trained_Models.7z?download=true). The network has some potential, with a better refined dataset and better network topology it could prove more successful.
113
+ * Added [HeadsNet3](https://huggingface.co/datasets/tfnn/HeadsNet/resolve/main/HeadsNet3.7z?download=true) a pivot where I attempted to train an FNN/MLP on a 1024 component input vector of a 32x32 grayscale image of a face to output a 32x32x32 grayscale voxel volume of a 3D head. Results where not overwhelmingly positive. Had higher hopes.