Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
iperbole commited on
Commit
136b041
·
verified ·
1 Parent(s): f29e53d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +29 -5
README.md CHANGED
@@ -49,7 +49,7 @@ configs:
49
  path: Synth/test-*
50
  ---
51
 
52
- # Automatic Misogyny Identification (AMI)
53
 
54
  Original Paper: https://amievalita2020.github.io
55
 
@@ -59,8 +59,32 @@ This task consists of tweet classification, specifically, categorization of the
59
 
60
  We taken both subtasks, *raw_dataset* uploaded as *Behaviour* (3 class classification) and *synthetic* uploaded as *Synth* (2 class classification).
61
 
62
- Data statistics:
63
- - add
64
 
65
- Proposed Prompts:
66
- - add
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49
  path: Synth/test-*
50
  ---
51
 
52
+ # Automatic Misogyny Identification (AMI)
53
 
54
  Original Paper: https://amievalita2020.github.io
55
 
 
59
 
60
  We taken both subtasks, *raw_dataset* uploaded as *Behaviour* (3 class classification) and *synthetic* uploaded as *Synth* (2 class classification).
61
 
62
+ ## Statitics
 
63
 
64
+ | AMI Behaviour | Non Misogino | Misogino | Misogino Aggressivo |
65
+ | -------- | ------- | ------- |
66
+ | Training | 2663 | 554 | 1783 |
67
+ | Test | 500 | 324 | 176 |
68
+
69
+ | AMI Synth | Non Misogino | Misogino |
70
+ | -------- | ------- |
71
+ | Training | 3670 | 3344 |
72
+ | Test | 1454 | 1454 |
73
+
74
+
75
+ ## Proposed Prompts
76
+
77
+ Here we will describe the prompt given to the model over which we will compute the perplexity score, as model's answer we will chose the prompt with lower perplexity.
78
+ Moreover, for each subtask, we define a description that is prepended to the prompts, needed by the model to understand the task.
79
+
80
+ ### Behaviour
81
+
82
+ Description of the task: "Indica il livello di misoginia presente nei seguenti tweets."
83
+ Label (Non Misogino): "Tweet: '{{text}}'.\nIl tweet non presenta alcun elemento misogino"
84
+ Label (Misogino): "Tweet: '{{text}}'.\nIl tweet presenta caratteristiche misogine"
85
+ Label (Misogino Aggressivo): "Tweet: '{{text}}'.\nIl tweet presenta caratteristiche misogine aggressive"
86
+
87
+ ### Synth
88
+ Description of the task: "Indica se i seguenti tweets presentano caratteristiche o elementi misogini."
89
+ Label (Non Misogino): "Tweet: '{{text}}'.\nIl tweet non presenta alcun elemento misogino"
90
+ Label (Misogino): "Tweet: '{{text}}'.\nIl tweet presenta caratteristiche misogine"