File size: 2,863 Bytes
aaaac36
 
 
 
 
 
 
 
 
 
 
7dea71c
 
 
 
 
aaaac36
 
 
 
 
7dea71c
 
8f5eb61
 
 
 
 
 
 
 
aaaac36
8f5eb61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
dataset_info:
  features:
  - name: seq
    dtype: string
  - name: label
    dtype: float64
  splits:
  - name: train
    num_bytes: 815082
    num_examples: 1706
  - name: test
    num_bytes: 92795
    num_examples: 190
  download_size: 901099
  dataset_size: 907877
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
  - split: test
    path: data/test-*
license: apache-2.0
task_categories:
- text-classification
tags:
- biology
- chemistry
size_categories:
- 1K<n<10K
---


# Dataset Card for Optimal Temperature Dataset

### Dataset Summary

Grasping the catalytic activity of enzymes is pivotal for industrial enzyme design, particularly in predicting the optimal temperature for a given enzyme’s catalytic effect. 

## Dataset Structure

### Data Instances
For each instance, there is a string representing the protein sequence and a float value indicating the optimal temperature for a given enzyme’s catalytic effect.  See the [optimal temperature dataset viewer](https://huggingface.co/datasets/Bo1015/optimal_temperature/viewer) to explore more examples.

```
{'seq':'MEHVIDNFDNIDKCLKCGKPIKVVKLKYIKKKIENIPNSHLINFKYCSKCKRENVIENL'
'label':60.5}
```

The average  for the `seq` and the `label` are provided below:

| Feature    | Mean Count |
| ---------- | ---------------- |
| seq    |    467   |
| label (0)   |    50.0   |




### Data Fields

- `seq`: a string containing the protein sequence
- `label`: a float value indicating the optimal temperature for a given enzyme’s catalytic effect.

### Data Splits

The Optimal Temperature dataset has 2 splits: _train_ and _test_. Below are the statistics of the dataset.

| Dataset Split | Number of Instances in Split                |
| ------------- | ------------------------------------------- |
| Train         | 1,706                        |
| Test          | 190                           |

### Source Data

#### Initial Data Collection and Normalization

The dataset utilized for this task is primarily procured by [DeepET](https://onlinelibrary.wiley.com/doi/abs/10.1002/pro.4480), a recent advancement in the field that uses deep learning techniques to understand enzyme thermal adaptation.


### Licensing Information

The dataset is released under the [Apache-2.0 License](http://www.apache.org/licenses/LICENSE-2.0). 

### Citation
If you find our work useful, please consider citing the following paper:

```
@misc{chen2024xtrimopglm,
  title={xTrimoPGLM: unified 100B-scale pre-trained transformer for deciphering the language of protein},
  author={Chen, Bo and Cheng, Xingyi and Li, Pan and Geng, Yangli-ao and Gong, Jing and Li, Shen and Bei, Zhilei and Tan, Xu and Wang, Boyan and Zeng, Xin and others},
  year={2024},
  eprint={2401.06199},
  archivePrefix={arXiv},
  primaryClass={cs.CL},
  note={arXiv preprint arXiv:2401.06199}
}
```