IlyasMoutawwakil HF staff commited on
Commit
76f57f4
·
verified ·
1 Parent(s): 8dd54a2

Upload cuda_training_transformers_fill-mask_google-bert/bert-base-uncased/benchmark.json with huggingface_hub

Browse files
cuda_training_transformers_fill-mask_google-bert/bert-base-uncased/benchmark.json CHANGED
@@ -3,7 +3,7 @@
3
  "name": "cuda_training_transformers_fill-mask_google-bert/bert-base-uncased",
4
  "backend": {
5
  "name": "pytorch",
6
- "version": "2.6.0.dev20240917+cu124",
7
  "_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
8
  "task": "fill-mask",
9
  "library": "transformers",
@@ -110,7 +110,7 @@
110
  "overall": {
111
  "memory": {
112
  "unit": "MB",
113
- "max_ram": 1297.5104,
114
  "max_global_vram": 3176.660992,
115
  "max_process_vram": 0.0,
116
  "max_reserved": 2520.776704,
@@ -119,24 +119,24 @@
119
  "latency": {
120
  "unit": "s",
121
  "count": 5,
122
- "total": 0.5069946823120117,
123
- "mean": 0.10139893646240235,
124
- "stdev": 0.11406491904050146,
125
- "p50": 0.044851200103759765,
126
- "p90": 0.21580307922363284,
127
- "p95": 0.272664158630371,
128
- "p99": 0.3181530221557617,
129
  "values": [
130
- 0.32952523803710937,
131
- 0.04521984100341797,
132
- 0.044851200103759765,
133
- 0.04398489761352539,
134
- 0.04341350555419922
135
  ]
136
  },
137
  "throughput": {
138
  "unit": "samples/s",
139
- "value": 98.62036377184187
140
  },
141
  "energy": null,
142
  "efficiency": null
@@ -144,7 +144,7 @@
144
  "warmup": {
145
  "memory": {
146
  "unit": "MB",
147
- "max_ram": 1297.5104,
148
  "max_global_vram": 3176.660992,
149
  "max_process_vram": 0.0,
150
  "max_reserved": 2520.776704,
@@ -153,21 +153,21 @@
153
  "latency": {
154
  "unit": "s",
155
  "count": 2,
156
- "total": 0.37474507904052734,
157
- "mean": 0.18737253952026367,
158
- "stdev": 0.1421526985168457,
159
- "p50": 0.18737253952026367,
160
- "p90": 0.30109469833374025,
161
- "p95": 0.3153099681854248,
162
- "p99": 0.32668218406677246,
163
  "values": [
164
- 0.32952523803710937,
165
- 0.04521984100341797
166
  ]
167
  },
168
  "throughput": {
169
  "unit": "samples/s",
170
- "value": 21.347845368597433
171
  },
172
  "energy": null,
173
  "efficiency": null
@@ -175,7 +175,7 @@
175
  "train": {
176
  "memory": {
177
  "unit": "MB",
178
- "max_ram": 1297.5104,
179
  "max_global_vram": 3176.660992,
180
  "max_process_vram": 0.0,
181
  "max_reserved": 2520.776704,
@@ -184,22 +184,22 @@
184
  "latency": {
185
  "unit": "s",
186
  "count": 3,
187
- "total": 0.13224960327148438,
188
- "mean": 0.044083201090494795,
189
- "stdev": 0.0005910381175791346,
190
- "p50": 0.04398489761352539,
191
- "p90": 0.04467793960571289,
192
- "p95": 0.04476456985473633,
193
- "p99": 0.04483387405395508,
194
  "values": [
195
- 0.044851200103759765,
196
- 0.04398489761352539,
197
- 0.04341350555419922
198
  ]
199
  },
200
  "throughput": {
201
  "unit": "samples/s",
202
- "value": 136.10626841011594
203
  },
204
  "energy": null,
205
  "efficiency": null
 
3
  "name": "cuda_training_transformers_fill-mask_google-bert/bert-base-uncased",
4
  "backend": {
5
  "name": "pytorch",
6
+ "version": "2.4.1+cu124",
7
  "_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
8
  "task": "fill-mask",
9
  "library": "transformers",
 
110
  "overall": {
111
  "memory": {
112
  "unit": "MB",
113
+ "max_ram": 1290.428416,
114
  "max_global_vram": 3176.660992,
115
  "max_process_vram": 0.0,
116
  "max_reserved": 2520.776704,
 
119
  "latency": {
120
  "unit": "s",
121
  "count": 5,
122
+ "total": 0.49973450088500976,
123
+ "mean": 0.09994690017700195,
124
+ "stdev": 0.1145905515653347,
125
+ "p50": 0.04256047821044922,
126
+ "p90": 0.21480182342529297,
127
+ "p95": 0.27196437301635734,
128
+ "p99": 0.31769441268920895,
129
  "values": [
130
+ 0.3291269226074219,
131
+ 0.04331417465209961,
132
+ 0.042434558868408204,
133
+ 0.04256047821044922,
134
+ 0.04229836654663086
135
  ]
136
  },
137
  "throughput": {
138
  "unit": "samples/s",
139
+ "value": 100.05312803389002
140
  },
141
  "energy": null,
142
  "efficiency": null
 
144
  "warmup": {
145
  "memory": {
146
  "unit": "MB",
147
+ "max_ram": 1290.428416,
148
  "max_global_vram": 3176.660992,
149
  "max_process_vram": 0.0,
150
  "max_reserved": 2520.776704,
 
153
  "latency": {
154
  "unit": "s",
155
  "count": 2,
156
+ "total": 0.37244109725952146,
157
+ "mean": 0.18622054862976073,
158
+ "stdev": 0.14290637397766115,
159
+ "p50": 0.18622054862976073,
160
+ "p90": 0.30054564781188964,
161
+ "p95": 0.31483628520965573,
162
+ "p99": 0.32626879512786866,
163
  "values": [
164
+ 0.3291269226074219,
165
+ 0.04331417465209961
166
  ]
167
  },
168
  "throughput": {
169
  "unit": "samples/s",
170
+ "value": 21.479906645279545
171
  },
172
  "energy": null,
173
  "efficiency": null
 
175
  "train": {
176
  "memory": {
177
  "unit": "MB",
178
+ "max_ram": 1290.428416,
179
  "max_global_vram": 3176.660992,
180
  "max_process_vram": 0.0,
181
  "max_reserved": 2520.776704,
 
184
  "latency": {
185
  "unit": "s",
186
  "count": 3,
187
+ "total": 0.12729340362548827,
188
+ "mean": 0.042431134541829424,
189
+ "stdev": 0.00010703403068431213,
190
+ "p50": 0.042434558868408204,
191
+ "p90": 0.042535294342041015,
192
+ "p95": 0.04254788627624512,
193
+ "p99": 0.042557959823608396,
194
  "values": [
195
+ 0.042434558868408204,
196
+ 0.04256047821044922,
197
+ 0.04229836654663086
198
  ]
199
  },
200
  "throughput": {
201
  "unit": "samples/s",
202
+ "value": 141.4055990910421
203
  },
204
  "energy": null,
205
  "efficiency": null