IlyasMoutawwakil HF staff commited on
Commit
328a224
·
verified ·
1 Parent(s): c12ccd6

Upload cuda_training_transformers_fill-mask_google-bert/bert-base-uncased/benchmark.json with huggingface_hub

Browse files
cuda_training_transformers_fill-mask_google-bert/bert-base-uncased/benchmark.json CHANGED
@@ -3,7 +3,7 @@
3
  "name": "cuda_training_transformers_fill-mask_google-bert/bert-base-uncased",
4
  "backend": {
5
  "name": "pytorch",
6
- "version": "2.4.0+cu121",
7
  "_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
8
  "task": "fill-mask",
9
  "library": "transformers",
@@ -110,7 +110,7 @@
110
  "overall": {
111
  "memory": {
112
  "unit": "MB",
113
- "max_ram": 1154.29376,
114
  "max_global_vram": 3169.32096,
115
  "max_process_vram": 0.0,
116
  "max_reserved": 2520.776704,
@@ -119,24 +119,24 @@
119
  "latency": {
120
  "unit": "s",
121
  "count": 5,
122
- "total": 0.8239503135681153,
123
- "mean": 0.16479006271362306,
124
- "stdev": 0.24471952980441253,
125
- "p50": 0.0425082893371582,
126
- "p90": 0.40976443939208995,
127
- "p95": 0.5319964469909667,
128
- "p99": 0.6297820530700684,
129
  "values": [
130
- 0.6542284545898438,
131
- 0.043068416595458986,
132
- 0.0425082893371582,
133
- 0.04180070495605469,
134
- 0.04234444808959961
135
  ]
136
  },
137
  "throughput": {
138
  "unit": "samples/s",
139
- "value": 60.683270795146726
140
  },
141
  "energy": null,
142
  "efficiency": null
@@ -144,7 +144,7 @@
144
  "warmup": {
145
  "memory": {
146
  "unit": "MB",
147
- "max_ram": 1154.29376,
148
  "max_global_vram": 3169.32096,
149
  "max_process_vram": 0.0,
150
  "max_reserved": 2520.776704,
@@ -153,21 +153,21 @@
153
  "latency": {
154
  "unit": "s",
155
  "count": 2,
156
- "total": 0.6972968711853028,
157
- "mean": 0.3486484355926514,
158
- "stdev": 0.30558001899719245,
159
- "p50": 0.3486484355926514,
160
- "p90": 0.5931124507904053,
161
- "p95": 0.6236704526901246,
162
- "p99": 0.6481168542099,
163
  "values": [
164
- 0.6542284545898438,
165
- 0.043068416595458986
166
  ]
167
  },
168
  "throughput": {
169
  "unit": "samples/s",
170
- "value": 11.472875228023279
171
  },
172
  "energy": null,
173
  "efficiency": null
@@ -175,7 +175,7 @@
175
  "train": {
176
  "memory": {
177
  "unit": "MB",
178
- "max_ram": 1154.29376,
179
  "max_global_vram": 3169.32096,
180
  "max_process_vram": 0.0,
181
  "max_reserved": 2520.776704,
@@ -184,22 +184,22 @@
184
  "latency": {
185
  "unit": "s",
186
  "count": 3,
187
- "total": 0.1266534423828125,
188
- "mean": 0.04221781412760417,
189
- "stdev": 0.0003024301950791384,
190
- "p50": 0.04234444808959961,
191
- "p90": 0.04247552108764648,
192
- "p95": 0.04249190521240234,
193
- "p99": 0.04250501251220703,
194
  "values": [
195
- 0.0425082893371582,
196
- 0.04180070495605469,
197
- 0.04234444808959961
198
  ]
199
  },
200
  "throughput": {
201
  "unit": "samples/s",
202
- "value": 142.1201008149044
203
  },
204
  "energy": null,
205
  "efficiency": null
 
3
  "name": "cuda_training_transformers_fill-mask_google-bert/bert-base-uncased",
4
  "backend": {
5
  "name": "pytorch",
6
+ "version": "2.4.0+cu124",
7
  "_target_": "optimum_benchmark.backends.pytorch.backend.PyTorchBackend",
8
  "task": "fill-mask",
9
  "library": "transformers",
 
110
  "overall": {
111
  "memory": {
112
  "unit": "MB",
113
+ "max_ram": 1282.228224,
114
  "max_global_vram": 3169.32096,
115
  "max_process_vram": 0.0,
116
  "max_reserved": 2520.776704,
 
119
  "latency": {
120
  "unit": "s",
121
  "count": 5,
122
+ "total": 0.5063363265991211,
123
+ "mean": 0.10126726531982422,
124
+ "stdev": 0.11545870066599251,
125
+ "p50": 0.04336640167236328,
126
+ "p90": 0.21699301605224613,
127
+ "p95": 0.2745883201599121,
128
+ "p99": 0.32066456344604494,
129
  "values": [
130
+ 0.33218362426757814,
131
+ 0.04420710372924805,
132
+ 0.04331417465209961,
133
+ 0.04326502227783203,
134
+ 0.04336640167236328
135
  ]
136
  },
137
  "throughput": {
138
  "unit": "samples/s",
139
+ "value": 98.74859332300332
140
  },
141
  "energy": null,
142
  "efficiency": null
 
144
  "warmup": {
145
  "memory": {
146
  "unit": "MB",
147
+ "max_ram": 1282.228224,
148
  "max_global_vram": 3169.32096,
149
  "max_process_vram": 0.0,
150
  "max_reserved": 2520.776704,
 
153
  "latency": {
154
  "unit": "s",
155
  "count": 2,
156
+ "total": 0.37639072799682616,
157
+ "mean": 0.18819536399841308,
158
+ "stdev": 0.14398826026916503,
159
+ "p50": 0.18819536399841308,
160
+ "p90": 0.30338597221374514,
161
+ "p95": 0.31778479824066164,
162
+ "p99": 0.32930385906219484,
163
  "values": [
164
+ 0.33218362426757814,
165
+ 0.04420710372924805
166
  ]
167
  },
168
  "throughput": {
169
  "unit": "samples/s",
170
+ "value": 21.25450869254
171
  },
172
  "energy": null,
173
  "efficiency": null
 
175
  "train": {
176
  "memory": {
177
  "unit": "MB",
178
+ "max_ram": 1282.228224,
179
  "max_global_vram": 3169.32096,
180
  "max_process_vram": 0.0,
181
  "max_reserved": 2520.776704,
 
184
  "latency": {
185
  "unit": "s",
186
  "count": 3,
187
+ "total": 0.1299455986022949,
188
+ "mean": 0.0433151995340983,
189
+ "stdev": 4.1394308757077004e-05,
190
+ "p50": 0.04331417465209961,
191
+ "p90": 0.04335595626831055,
192
+ "p95": 0.043361178970336915,
193
+ "p99": 0.04336535713195801,
194
  "values": [
195
+ 0.04331417465209961,
196
+ 0.04326502227783203,
197
+ 0.04336640167236328
198
  ]
199
  },
200
  "throughput": {
201
  "unit": "samples/s",
202
+ "value": 138.519505036026
203
  },
204
  "energy": null,
205
  "efficiency": null