|
"""Sydt Dataset""" |
|
|
|
from typing import List |
|
from functools import partial |
|
|
|
import datasets |
|
|
|
import pandas |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
_ENCODING_DICS = {} |
|
_BASE_FEATURE_NAMES = [ |
|
"salary", |
|
"commission", |
|
"age", |
|
"education", |
|
"car", |
|
"zip", |
|
"housevalue", |
|
"yearsowned", |
|
"loan", |
|
"class", |
|
] |
|
|
|
DESCRIPTION = "Sydt dataset." |
|
_HOMEPAGE = "" |
|
_URLS = ("") |
|
_CITATION = """""" |
|
|
|
|
|
urls_per_split = { |
|
"train": "https://huggingface.co/datasets/mstz/sydt/resolve/main/sydt.csv" |
|
} |
|
features_types_per_config = { |
|
"sydt": { |
|
"salary": datasets.Value("int64"), |
|
"commission": datasets.Value("int64"), |
|
"age": datasets.Value("int64"), |
|
"education": datasets.Value("int64"), |
|
"car": datasets.Value("int64"), |
|
"zip": datasets.Value("string"), |
|
"housevalue": datasets.Value("int64"), |
|
"yearsowned": datasets.Value("int64"), |
|
"loan": datasets.Value("int64"), |
|
"class": datasets.ClassLabel(num_classes=2), |
|
} |
|
} |
|
|
|
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} |
|
|
|
|
|
class SydtConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(SydtConfig, self).__init__(version=VERSION, **kwargs) |
|
self.features = features_per_config[kwargs["name"]] |
|
|
|
|
|
class Sydt(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG = "sydt" |
|
BUILDER_CONFIGS = [SydtConfig(name="sydt", description="Sydt for binary classification.")] |
|
|
|
|
|
def _info(self): |
|
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, |
|
features=features_per_config[self.config.name]) |
|
|
|
return info |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
downloads = dl_manager.download_and_extract(urls_per_split) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath: str): |
|
data = pandas.read_csv(filepath, header=None) |
|
data = self.preprocess(data) |
|
|
|
for row_id, row in data.iterrows(): |
|
data_row = dict(row) |
|
|
|
yield row_id, data_row |
|
|
|
def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame: |
|
data.columns = _BASE_FEATURE_NAMES |
|
data = data[~data["class"].isna()] |
|
data["class"] = data["class"].apply(lambda x: x - 1) |
|
|
|
for feature in _ENCODING_DICS: |
|
encoding_function = partial(self.encode, feature) |
|
data[feature] = data[feature].apply(encoding_function) |
|
|
|
return data[list(features_types_per_config[self.config.name].keys())] |
|
|
|
def encode(self, feature, value): |
|
if feature in _ENCODING_DICS: |
|
return _ENCODING_DICS[feature][value] |
|
raise ValueError(f"Unknown feature: {feature}") |
|
|