|
from typing import List |
|
from functools import partial |
|
|
|
import datasets |
|
|
|
import pandas |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
|
|
DESCRIPTION = "Glass efficiency dataset from the UCI repository." |
|
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/242/glass+efficiency" |
|
_URLS = ("https://archive-beta.ics.uci.edu/dataset/30/glass+method+choice") |
|
_CITATION = """ |
|
@misc{misc_glass_efficiency_242, |
|
author = {Tsanas,Athanasios & Xifara,Angeliki}, |
|
title = {{Glass efficiency}}, |
|
year = {2012}, |
|
howpublished = {UCI Machine Learning Repository}, |
|
note = {{DOI}: \\url{10.24432/C51307}} |
|
}""" |
|
|
|
|
|
_BASE_FEATURE_NAMES = [ |
|
"refractive_index", |
|
"sodium", |
|
"magnesium", |
|
"aluminum", |
|
"silicon", |
|
"potassium", |
|
"calcium", |
|
"barium", |
|
"iron", |
|
"glass_type", |
|
] |
|
urls_per_split = { |
|
"train": "https://huggingface.co/datasets/mstz/glass/raw/main/glass.data" |
|
} |
|
features_types_per_config = { |
|
"glass": { |
|
"refractive_index": datasets.Value("float64"), |
|
"sodium": datasets.Value("float64"), |
|
"magnesium": datasets.Value("float64"), |
|
"aluminum": datasets.Value("float64"), |
|
"silicon": datasets.Value("float64"), |
|
"potassium": datasets.Value("float64"), |
|
"calcium": datasets.Value("float64"), |
|
"barium": datasets.Value("int8"), |
|
"iron": datasets.Value("float64"), |
|
"glass_type": datasets.ClassLabel(num_classes=7, names=("windows_1", "windows_2", |
|
"vehicle_windows_1", "vehicle_windows_2", |
|
"containers", "tableware", "headlamps")) |
|
}, |
|
"windows": { |
|
"refractive_index": datasets.Value("float64"), |
|
"sodium": datasets.Value("float64"), |
|
"magnesium": datasets.Value("float64"), |
|
"aluminum": datasets.Value("float64"), |
|
"silicon": datasets.Value("float64"), |
|
"potassium": datasets.Value("float64"), |
|
"calcium": datasets.Value("float64"), |
|
"barium": datasets.Value("int8"), |
|
"iron": datasets.Value("float64"), |
|
"is_windows_glass": datasets.ClassLabel(num_classes=2, names=("no", "yes")) |
|
}, |
|
"vehicles": { |
|
"refractive_index": datasets.Value("float64"), |
|
"sodium": datasets.Value("float64"), |
|
"magnesium": datasets.Value("float64"), |
|
"aluminum": datasets.Value("float64"), |
|
"silicon": datasets.Value("float64"), |
|
"potassium": datasets.Value("float64"), |
|
"calcium": datasets.Value("float64"), |
|
"barium": datasets.Value("int8"), |
|
"iron": datasets.Value("float64"), |
|
"is_vehicle_glass": datasets.ClassLabel(num_classes=2, names=("no", "yes")) |
|
}, |
|
"containers": { |
|
"refractive_index": datasets.Value("float64"), |
|
"sodium": datasets.Value("float64"), |
|
"magnesium": datasets.Value("float64"), |
|
"aluminum": datasets.Value("float64"), |
|
"silicon": datasets.Value("float64"), |
|
"potassium": datasets.Value("float64"), |
|
"calcium": datasets.Value("float64"), |
|
"barium": datasets.Value("int8"), |
|
"iron": datasets.Value("float64"), |
|
"is_container_glass": datasets.ClassLabel(num_classes=2, names=("no", "yes")) |
|
}, |
|
"tableware": { |
|
"refractive_index": datasets.Value("float64"), |
|
"sodium": datasets.Value("float64"), |
|
"magnesium": datasets.Value("float64"), |
|
"aluminum": datasets.Value("float64"), |
|
"silicon": datasets.Value("float64"), |
|
"potassium": datasets.Value("float64"), |
|
"calcium": datasets.Value("float64"), |
|
"barium": datasets.Value("int8"), |
|
"iron": datasets.Value("float64"), |
|
"is_tableware_glass": datasets.ClassLabel(num_classes=2, names=("no", "yes")) |
|
}, |
|
"headlamps": { |
|
"refractive_index": datasets.Value("float64"), |
|
"sodium": datasets.Value("float64"), |
|
"magnesium": datasets.Value("float64"), |
|
"aluminum": datasets.Value("float64"), |
|
"silicon": datasets.Value("float64"), |
|
"potassium": datasets.Value("float64"), |
|
"calcium": datasets.Value("float64"), |
|
"barium": datasets.Value("int8"), |
|
"iron": datasets.Value("float64"), |
|
"is_headlamp_glass": datasets.ClassLabel(num_classes=2, names=("no", "yes")) |
|
}, |
|
} |
|
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} |
|
|
|
|
|
class GlassConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(GlassConfig, self).__init__(version=VERSION, **kwargs) |
|
self.features = features_per_config[kwargs["name"]] |
|
|
|
|
|
class Glass(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG = "glass" |
|
BUILDER_CONFIGS = [ |
|
GlassConfig(name="glass", description="Glass dataset."), |
|
GlassConfig(name="windows", description="Is this windows glass?"), |
|
GlassConfig(name="vehicles", description="Is this vehicles glass?"), |
|
GlassConfig(name="containers", description="Is this containers glass?"), |
|
GlassConfig(name="tableware", description="Is this tableware glass?"), |
|
GlassConfig(name="headlamps", description="Is this headlamps glass?") |
|
] |
|
|
|
|
|
def _info(self): |
|
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, |
|
features=features_per_config[self.config.name]) |
|
|
|
return info |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
downloads = dl_manager.download_and_extract(urls_per_split) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}) |
|
] |
|
|
|
def _generate_examples(self, filepath: str): |
|
data = pandas.read_csv(filepath, header=None) |
|
data = self.preprocess(data) |
|
|
|
for row_id, row in data.iterrows(): |
|
data_row = dict(row) |
|
|
|
yield row_id, data_row |
|
|
|
def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame: |
|
data.columns = _BASE_FEATURE_NAMES |
|
|
|
if self.config.name == "windows": |
|
data = data.rename(columns={"glass_type": "is_windows_glass"}) |
|
print("\n\n") |
|
print(data.is_windows_glass.unique()) |
|
data.loc[:, "is_windows_glass"] = data.is_windows_glass.apply(lambda x: 0 if x in {1, 2} else 0) |
|
print("\n\n") |
|
print(data.is_windows_glass.unique()) |
|
print("\n\n") |
|
|
|
elif self.config.name == "vehicles": |
|
data = data.rename(columns={"glass_type": "is_vehicle_glass"}) |
|
data.loc[:, "is_vehicle_glass"] = data.is_vehicle_glass.apply(lambda x: 0 if x in {3, 4} else 0) |
|
|
|
elif self.config.name == "containers": |
|
data = data.rename(columns={"glass_type": "is_container_glass"}) |
|
data.loc[:, "is_container_glass"] = data.is_container_glass.apply(lambda x: 0 if x == 5 else 0) |
|
|
|
elif self.config.name == "tableware": |
|
data = data.rename(columns={"glass_type": "is_tableware_glass"}) |
|
data.loc[:, "is_tableware_glass"] = data.is_tableware_glass.apply(lambda x: 0 if x == 6 else 0) |
|
|
|
elif self.config.name == "headlamps": |
|
data = data.rename(columns={"glass_type": "is_headlamp_glass"}) |
|
data.loc[:, "is_headlamp_glass"] = data.is_headlamp_glass.apply(lambda x: 0 if x == 7 else 0) |
|
|
|
else: |
|
data.loc[:, "glass_type"] = data.glass_type.apply(lambda x: x - 1) |
|
print(data.glass_type.unique()) |
|
|
|
return data |
|
|