|
"""Arcene Dataset""" |
|
|
|
from typing import List |
|
from functools import partial |
|
|
|
import datasets |
|
|
|
import pandas |
|
|
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
_ENCODING_DICS = { |
|
} |
|
|
|
DESCRIPTION = "Arcene dataset." |
|
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/167/arcene" |
|
_URLS = ("https://archive-beta.ics.uci.edu/dataset/167/arcene") |
|
_CITATION = """ |
|
@misc{misc_arcene_167, |
|
author = {Guyon,Isabelle, Gunn,Steve, Ben-Hur,Asa & Dror,Gideon}, |
|
title = {{Arcene}}, |
|
year = {2008}, |
|
howpublished = {UCI Machine Learning Repository}, |
|
note = {{DOI}: \\url{10.24432/C58P55}} |
|
} |
|
""" |
|
|
|
|
|
urls_per_split = { |
|
"train": "https://huggingface.co/datasets/mstz/arcene/raw/main/arcene_train.data" |
|
} |
|
features_types_per_config = { |
|
"arcene": {f"feature_{i}": datasets.Value("int64") for i in range(10000)} |
|
} |
|
features_types_per_config["arcene"]["class"] = datasets.ClassLabel(num_classes=2) |
|
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config} |
|
|
|
|
|
class ArceneConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super(ArceneConfig, self).__init__(version=VERSION, **kwargs) |
|
self.features = features_per_config[kwargs["name"]] |
|
|
|
|
|
class Arcene(datasets.GeneratorBasedBuilder): |
|
|
|
DEFAULT_CONFIG = "arcene" |
|
BUILDER_CONFIGS = [ArceneConfig(name="arcene", description="Arcene for binary classification.")] |
|
|
|
|
|
def _info(self): |
|
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE, |
|
features=features_per_config[self.config.name]) |
|
|
|
return info |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
downloads = dl_manager.download_and_extract(urls_per_split) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath: str): |
|
data = pandas.read_csv(filepath, header=None) |
|
columns = [f"feature_{i}" for i in range(10000)] + ["class"] |
|
data.columns = columns |
|
|
|
for row_id, row in data.iterrows(): |
|
print(f"on {row_id}") |
|
data_row = dict(row) |
|
|
|
yield row_id, data_row |
|
|
|
def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame: |
|
for feature in _ENCODING_DICS: |
|
encoding_function = partial(self.encode, feature) |
|
data.loc[:, feature] = data[feature].apply(encoding_function) |
|
|
|
return data[list(features_types_per_config[self.config.name].keys())] |
|
|
|
def encode(self, feature, value): |
|
if feature in _ENCODING_DICS: |
|
return _ENCODING_DICS[feature][value] |
|
raise ValueError(f"Unknown feature: {feature}") |
|
|