File size: 5,314 Bytes
831a492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
46c9629
 
831a492
 
9ba6c4c
 
5a3b396
831a492
 
 
 
 
 
 
 
 
 
 
5a3b396
831a492
 
 
 
 
 
 
 
 
 
46c9629
 
a8c961c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
831a492
 
 
 
 
9ba6c4c
831a492
9ba6c4c
831a492
 
 
9ba6c4c
831a492
 
 
9ba6c4c
a8c961c
 
 
 
 
831a492
 
 
 
 
 
 
 
 
 
 
 
 
be1f592
831a492
 
 
5a3b396
831a492
 
 
 
 
 
 
 
 
 
a8c961c
 
831a492
 
a8c961c
 
 
b513b01
a8c961c
 
 
 
 
831a492
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
from typing import List

import datasets

import pandas


VERSION = datasets.Version("1.0.0")
_BASE_FEATURE_NAMES = [
    "temperature",
    "has_nausea",
    "has_lumbar_pain",
    "has_urine_pushing",
    "has_micturition_pains",
    "has_burnt_urethra",
    "has_inflammed_bladder",
    "has_nephritis_of_renal_pelvis",
    "has_acute_inflammation"
]

DESCRIPTION = "Acute_Inflammation dataset from the UCI ML repository."
_HOMEPAGE = "https://archive.ics.uci.edu/ml/datasets/Acute_Inflammation"
_URLS = ("https://huggingface.co/datasets/mstz/acute_inflammation/raw/main/diagnosis.csv")
_CITATION = """
@misc{misc_acute_inflammations_184,
  author       = {Czerniak,Jacek},
  title        = {{Acute Inflammations}},
  year         = {2009},
  howpublished = {UCI Machine Learning Repository},
  note         = {{DOI}: \\url{10.24432/C5V59S}}
}"""

# Dataset info
urls_per_split = {
    "train": "https://huggingface.co/datasets/mstz/acute_inflammation/raw/main/diagnosis.csv"
}
features_types_per_config = {
    "inflammation": {
        "temperature": datasets.Value("float64"),
        "has_nausea": datasets.Value("bool"),
        "has_lumbar_pain": datasets.Value("bool"),
        "has_urine_pushing": datasets.Value("bool"),
        "has_micturition_pains": datasets.Value("bool"),
        "has_burnt_urethra": datasets.Value("bool"),
        "has_inflammed_bladder": datasets.Value("bool"),
        "has_nephritis_of_renal_pelvis": datasets.Value("bool"),
        "has_acute_inflammation": datasets.ClassLabel(num_classes=2)
    },
    "nephritis": {
        "temperature": datasets.Value("float64"),
        "has_nausea": datasets.Value("bool"),
        "has_lumbar_pain": datasets.Value("bool"),
        "has_urine_pushing": datasets.Value("bool"),
        "has_micturition_pains": datasets.Value("bool"),
        "has_burnt_urethra": datasets.Value("bool"),
        "has_inflammed_bladder": datasets.Value("bool"),
        "has_acute_inflammation": datasets.Value("bool"),
        "has_nephritis_of_renal_pelvis": datasets.ClassLabel(num_classes=2)
    },
    "bladder": {
        "temperature": datasets.Value("float64"),
        "has_nausea": datasets.Value("bool"),
        "has_lumbar_pain": datasets.Value("bool"),
        "has_urine_pushing": datasets.Value("bool"),
        "has_micturition_pains": datasets.Value("bool"),
        "has_burnt_urethra": datasets.Value("bool"),
        "has_acute_inflammation": datasets.Value("bool"),
        "has_nephritis_of_renal_pelvis": datasets.Value("bool"),
        "has_inflammed_bladder": datasets.ClassLabel(num_classes=2), 
    }
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}


class Acute_InflammationConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(Acute_InflammationConfig, self).__init__(version=VERSION, **kwargs)
        self.features = features_per_config[kwargs["name"]]


class Acute_Inflammation(datasets.GeneratorBasedBuilder):
    # dataset versions
    DEFAULT_CONFIG = "inflammation"
    BUILDER_CONFIGS = [
        Acute_InflammationConfig(name="inflammation",
                                 description="Binary classification of inflammation."),
        Acute_InflammationConfig(name="nephritis",
                                 description="Binary classification of nephritis."),
        Acute_InflammationConfig(name="bladder",
                                 description="Binary classification of bladder inflammation."),
    ]


    def _info(self):
        info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
                                    features=features_per_config[self.config.name])

        return info
    
    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        downloads = dl_manager.download_and_extract(urls_per_split)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]})
        ]
    
    def _generate_examples(self, filepath: str):
        data = pandas.read_csv(filepath, header=None)
        data = self.preprocess(data, config=self.config.name)

        for row_id, row in data.iterrows():
            data_row = dict(row)

            yield row_id, data_row

    def preprocess(self, data: pandas.DataFrame, config: str = DEFAULT_CONFIG) -> pandas.DataFrame:
        data.columns = _BASE_FEATURE_NAMES
        boolean_features = ["has_nausea", "has_lumbar_pain", "has_urine_pushing",
                                "has_micturition_pains", "has_burnt_urethra", "has_inflammed_bladder",
                                "has_nephritis_of_renal_pelvis", "has_acute_inflammation"]
        for f in boolean_features:
            data.loc[:, f] = data[f].apply(lambda x: True if x == "yes" else False)
        
        if config == "inflammation":           
            data = data.astype({"has_acute_inflammation": int})       
        elif config == "nephritis":
            data = data.astype({"has_nephritis_of_renal_pelvis": int})
        elif config == "bladder":
            data = data.astype({"has_inflammed_bladder": int})

        data = data[list(features_types_per_config[config].keys())]       
        
        return data