mrmocciai commited on
Commit
b891186
·
1 Parent(s): 9c2e075

Delete gui_v0.py

Browse files
Files changed (1) hide show
  1. gui_v0.py +0 -696
gui_v0.py DELETED
@@ -1,696 +0,0 @@
1
- import os, sys, traceback, re
2
-
3
- import json
4
-
5
- now_dir = os.getcwd()
6
- sys.path.append(now_dir)
7
- from config import Config
8
-
9
- Config = Config()
10
- import PySimpleGUI as sg
11
- import sounddevice as sd
12
- import noisereduce as nr
13
- import numpy as np
14
- from fairseq import checkpoint_utils
15
- import librosa, torch, pyworld, faiss, time, threading
16
- import torch.nn.functional as F
17
- import torchaudio.transforms as tat
18
- import scipy.signal as signal
19
-
20
-
21
- # import matplotlib.pyplot as plt
22
- from lib.infer_pack.models import (
23
- SynthesizerTrnMs256NSFsid,
24
- SynthesizerTrnMs256NSFsid_nono,
25
- SynthesizerTrnMs768NSFsid,
26
- SynthesizerTrnMs768NSFsid_nono,
27
- )
28
- from i18n import I18nAuto
29
-
30
- i18n = I18nAuto()
31
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
32
- current_dir = os.getcwd()
33
-
34
-
35
- class RVC:
36
- def __init__(
37
- self, key, hubert_path, pth_path, index_path, npy_path, index_rate
38
- ) -> None:
39
- """
40
- 初始化
41
- """
42
- try:
43
- self.f0_up_key = key
44
- self.time_step = 160 / 16000 * 1000
45
- self.f0_min = 50
46
- self.f0_max = 1100
47
- self.f0_mel_min = 1127 * np.log(1 + self.f0_min / 700)
48
- self.f0_mel_max = 1127 * np.log(1 + self.f0_max / 700)
49
- self.sr = 16000
50
- self.window = 160
51
- if index_rate != 0:
52
- self.index = faiss.read_index(index_path)
53
- # self.big_npy = np.load(npy_path)
54
- self.big_npy = self.index.reconstruct_n(0, self.index.ntotal)
55
- print("index search enabled")
56
- self.index_rate = index_rate
57
- model_path = hubert_path
58
- print("load model(s) from {}".format(model_path))
59
- models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
60
- [model_path],
61
- suffix="",
62
- )
63
- self.model = models[0]
64
- self.model = self.model.to(device)
65
- if Config.is_half:
66
- self.model = self.model.half()
67
- else:
68
- self.model = self.model.float()
69
- self.model.eval()
70
- cpt = torch.load(pth_path, map_location="cpu")
71
- self.tgt_sr = cpt["config"][-1]
72
- cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
73
- self.if_f0 = cpt.get("f0", 1)
74
- self.version = cpt.get("version", "v1")
75
- if self.version == "v1":
76
- if self.if_f0 == 1:
77
- self.net_g = SynthesizerTrnMs256NSFsid(
78
- *cpt["config"], is_half=Config.is_half
79
- )
80
- else:
81
- self.net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
82
- elif self.version == "v2":
83
- if self.if_f0 == 1:
84
- self.net_g = SynthesizerTrnMs768NSFsid(
85
- *cpt["config"], is_half=Config.is_half
86
- )
87
- else:
88
- self.net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
89
- del self.net_g.enc_q
90
- print(self.net_g.load_state_dict(cpt["weight"], strict=False))
91
- self.net_g.eval().to(device)
92
- if Config.is_half:
93
- self.net_g = self.net_g.half()
94
- else:
95
- self.net_g = self.net_g.float()
96
- except:
97
- print(traceback.format_exc())
98
-
99
- def get_f0(self, x, f0_up_key, inp_f0=None):
100
- x_pad = 1
101
- f0_min = 50
102
- f0_max = 1100
103
- f0_mel_min = 1127 * np.log(1 + f0_min / 700)
104
- f0_mel_max = 1127 * np.log(1 + f0_max / 700)
105
- f0, t = pyworld.harvest(
106
- x.astype(np.double),
107
- fs=self.sr,
108
- f0_ceil=f0_max,
109
- f0_floor=f0_min,
110
- frame_period=10,
111
- )
112
- f0 = pyworld.stonemask(x.astype(np.double), f0, t, self.sr)
113
- f0 = signal.medfilt(f0, 3)
114
- f0 *= pow(2, f0_up_key / 12)
115
- # with open("test.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
116
- tf0 = self.sr // self.window # 每秒f0点数
117
- if inp_f0 is not None:
118
- delta_t = np.round(
119
- (inp_f0[:, 0].max() - inp_f0[:, 0].min()) * tf0 + 1
120
- ).astype("int16")
121
- replace_f0 = np.interp(
122
- list(range(delta_t)), inp_f0[:, 0] * 100, inp_f0[:, 1]
123
- )
124
- shape = f0[x_pad * tf0 : x_pad * tf0 + len(replace_f0)].shape[0]
125
- f0[x_pad * tf0 : x_pad * tf0 + len(replace_f0)] = replace_f0[:shape]
126
- # with open("test_opt.txt","w")as f:f.write("\n".join([str(i)for i in f0.tolist()]))
127
- f0bak = f0.copy()
128
- f0_mel = 1127 * np.log(1 + f0 / 700)
129
- f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
130
- f0_mel_max - f0_mel_min
131
- ) + 1
132
- f0_mel[f0_mel <= 1] = 1
133
- f0_mel[f0_mel > 255] = 255
134
- f0_coarse = np.rint(f0_mel).astype(np.int)
135
- return f0_coarse, f0bak # 1-0
136
-
137
- def infer(self, feats: torch.Tensor) -> np.ndarray:
138
- """
139
- 推理函数
140
- """
141
- audio = feats.clone().cpu().numpy()
142
- assert feats.dim() == 1, feats.dim()
143
- feats = feats.view(1, -1)
144
- padding_mask = torch.BoolTensor(feats.shape).fill_(False)
145
- if Config.is_half:
146
- feats = feats.half()
147
- else:
148
- feats = feats.float()
149
- inputs = {
150
- "source": feats.to(device),
151
- "padding_mask": padding_mask.to(device),
152
- "output_layer": 9 if self.version == "v1" else 12,
153
- }
154
- torch.cuda.synchronize()
155
- with torch.no_grad():
156
- logits = self.model.extract_features(**inputs)
157
- feats = (
158
- self.model.final_proj(logits[0]) if self.version == "v1" else logits[0]
159
- )
160
-
161
- ####索引优化
162
- try:
163
- if (
164
- hasattr(self, "index")
165
- and hasattr(self, "big_npy")
166
- and self.index_rate != 0
167
- ):
168
- npy = feats[0].cpu().numpy().astype("float32")
169
- score, ix = self.index.search(npy, k=8)
170
- weight = np.square(1 / score)
171
- weight /= weight.sum(axis=1, keepdims=True)
172
- npy = np.sum(self.big_npy[ix] * np.expand_dims(weight, axis=2), axis=1)
173
- if Config.is_half:
174
- npy = npy.astype("float16")
175
- feats = (
176
- torch.from_numpy(npy).unsqueeze(0).to(device) * self.index_rate
177
- + (1 - self.index_rate) * feats
178
- )
179
- else:
180
- print("index search FAIL or disabled")
181
- except:
182
- traceback.print_exc()
183
- print("index search FAIL")
184
- feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
185
- torch.cuda.synchronize()
186
- print(feats.shape)
187
- if self.if_f0 == 1:
188
- pitch, pitchf = self.get_f0(audio, self.f0_up_key)
189
- p_len = min(feats.shape[1], 13000, pitch.shape[0]) # 太大了爆显存
190
- else:
191
- pitch, pitchf = None, None
192
- p_len = min(feats.shape[1], 13000) # 太大了爆显存
193
- torch.cuda.synchronize()
194
- # print(feats.shape,pitch.shape)
195
- feats = feats[:, :p_len, :]
196
- if self.if_f0 == 1:
197
- pitch = pitch[:p_len]
198
- pitchf = pitchf[:p_len]
199
- pitch = torch.LongTensor(pitch).unsqueeze(0).to(device)
200
- pitchf = torch.FloatTensor(pitchf).unsqueeze(0).to(device)
201
- p_len = torch.LongTensor([p_len]).to(device)
202
- ii = 0 # sid
203
- sid = torch.LongTensor([ii]).to(device)
204
- with torch.no_grad():
205
- if self.if_f0 == 1:
206
- infered_audio = (
207
- self.net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0]
208
- .data.cpu()
209
- .float()
210
- )
211
- else:
212
- infered_audio = (
213
- self.net_g.infer(feats, p_len, sid)[0][0, 0].data.cpu().float()
214
- )
215
- torch.cuda.synchronize()
216
- return infered_audio
217
-
218
-
219
- class GUIConfig:
220
- def __init__(self) -> None:
221
- self.hubert_path: str = ""
222
- self.pth_path: str = ""
223
- self.index_path: str = ""
224
- self.npy_path: str = ""
225
- self.pitch: int = 12
226
- self.samplerate: int = 44100
227
- self.block_time: float = 1.0 # s
228
- self.buffer_num: int = 1
229
- self.threhold: int = -30
230
- self.crossfade_time: float = 0.08
231
- self.extra_time: float = 0.04
232
- self.I_noise_reduce = False
233
- self.O_noise_reduce = False
234
- self.index_rate = 0.3
235
-
236
-
237
- class GUI:
238
- def __init__(self) -> None:
239
- self.config = GUIConfig()
240
- self.flag_vc = False
241
-
242
- self.launcher()
243
-
244
- def load(self):
245
- (
246
- input_devices,
247
- output_devices,
248
- input_devices_indices,
249
- output_devices_indices,
250
- ) = self.get_devices()
251
- try:
252
- with open("values1.json", "r") as j:
253
- data = json.load(j)
254
- except:
255
- with open("values1.json", "w") as j:
256
- data = {
257
- "pth_path": "",
258
- "index_path": "",
259
- "sg_input_device": input_devices[
260
- input_devices_indices.index(sd.default.device[0])
261
- ],
262
- "sg_output_device": output_devices[
263
- output_devices_indices.index(sd.default.device[1])
264
- ],
265
- "threhold": "-45",
266
- "pitch": "0",
267
- "index_rate": "0",
268
- "block_time": "1",
269
- "crossfade_length": "0.04",
270
- "extra_time": "1",
271
- }
272
- return data
273
-
274
- def launcher(self):
275
- data = self.load()
276
- sg.theme("LightBlue3")
277
- input_devices, output_devices, _, _ = self.get_devices()
278
- layout = [
279
- [
280
- sg.Frame(
281
- title=i18n("加载模型"),
282
- layout=[
283
- [
284
- sg.Input(
285
- default_text="hubert_base.pt",
286
- key="hubert_path",
287
- disabled=True,
288
- ),
289
- sg.FileBrowse(
290
- i18n("Hubert模型"),
291
- initial_folder=os.path.join(os.getcwd()),
292
- file_types=(("pt files", "*.pt"),),
293
- ),
294
- ],
295
- [
296
- sg.Input(
297
- default_text=data.get("pth_path", ""),
298
- key="pth_path",
299
- ),
300
- sg.FileBrowse(
301
- i18n("选择.pth文件"),
302
- initial_folder=os.path.join(os.getcwd(), "weights"),
303
- file_types=(("weight files", "*.pth"),),
304
- ),
305
- ],
306
- [
307
- sg.Input(
308
- default_text=data.get("index_path", ""),
309
- key="index_path",
310
- ),
311
- sg.FileBrowse(
312
- i18n("选择.index文件"),
313
- initial_folder=os.path.join(os.getcwd(), "logs"),
314
- file_types=(("index files", "*.index"),),
315
- ),
316
- ],
317
- [
318
- sg.Input(
319
- default_text="你不需要填写这个You don't need write this.",
320
- key="npy_path",
321
- disabled=True,
322
- ),
323
- sg.FileBrowse(
324
- i18n("选择.npy文件"),
325
- initial_folder=os.path.join(os.getcwd(), "logs"),
326
- file_types=(("feature files", "*.npy"),),
327
- ),
328
- ],
329
- ],
330
- )
331
- ],
332
- [
333
- sg.Frame(
334
- layout=[
335
- [
336
- sg.Text(i18n("输入设备")),
337
- sg.Combo(
338
- input_devices,
339
- key="sg_input_device",
340
- default_value=data.get("sg_input_device", ""),
341
- ),
342
- ],
343
- [
344
- sg.Text(i18n("输出设备")),
345
- sg.Combo(
346
- output_devices,
347
- key="sg_output_device",
348
- default_value=data.get("sg_output_device", ""),
349
- ),
350
- ],
351
- ],
352
- title=i18n("音频设备(请使用同种类驱动)"),
353
- )
354
- ],
355
- [
356
- sg.Frame(
357
- layout=[
358
- [
359
- sg.Text(i18n("响应阈值")),
360
- sg.Slider(
361
- range=(-60, 0),
362
- key="threhold",
363
- resolution=1,
364
- orientation="h",
365
- default_value=data.get("threhold", ""),
366
- ),
367
- ],
368
- [
369
- sg.Text(i18n("音调设置")),
370
- sg.Slider(
371
- range=(-24, 24),
372
- key="pitch",
373
- resolution=1,
374
- orientation="h",
375
- default_value=data.get("pitch", ""),
376
- ),
377
- ],
378
- [
379
- sg.Text(i18n("Index Rate")),
380
- sg.Slider(
381
- range=(0.0, 1.0),
382
- key="index_rate",
383
- resolution=0.01,
384
- orientation="h",
385
- default_value=data.get("index_rate", ""),
386
- ),
387
- ],
388
- ],
389
- title=i18n("常规设置"),
390
- ),
391
- sg.Frame(
392
- layout=[
393
- [
394
- sg.Text(i18n("采样长度")),
395
- sg.Slider(
396
- range=(0.1, 3.0),
397
- key="block_time",
398
- resolution=0.1,
399
- orientation="h",
400
- default_value=data.get("block_time", ""),
401
- ),
402
- ],
403
- [
404
- sg.Text(i18n("淡入淡出长度")),
405
- sg.Slider(
406
- range=(0.01, 0.15),
407
- key="crossfade_length",
408
- resolution=0.01,
409
- orientation="h",
410
- default_value=data.get("crossfade_length", ""),
411
- ),
412
- ],
413
- [
414
- sg.Text(i18n("额外推理时长")),
415
- sg.Slider(
416
- range=(0.05, 3.00),
417
- key="extra_time",
418
- resolution=0.01,
419
- orientation="h",
420
- default_value=data.get("extra_time", ""),
421
- ),
422
- ],
423
- [
424
- sg.Checkbox(i18n("输入降噪"), key="I_noise_reduce"),
425
- sg.Checkbox(i18n("输出降噪"), key="O_noise_reduce"),
426
- ],
427
- ],
428
- title=i18n("性能设置"),
429
- ),
430
- ],
431
- [
432
- sg.Button(i18n("开始音频转换"), key="start_vc"),
433
- sg.Button(i18n("停止音频转换"), key="stop_vc"),
434
- sg.Text(i18n("推理时间(ms):")),
435
- sg.Text("0", key="infer_time"),
436
- ],
437
- ]
438
- self.window = sg.Window("RVC - GUI", layout=layout)
439
- self.event_handler()
440
-
441
- def event_handler(self):
442
- while True:
443
- event, values = self.window.read()
444
- if event == sg.WINDOW_CLOSED:
445
- self.flag_vc = False
446
- exit()
447
- if event == "start_vc" and self.flag_vc == False:
448
- if self.set_values(values) == True:
449
- print("using_cuda:" + str(torch.cuda.is_available()))
450
- self.start_vc()
451
- settings = {
452
- "pth_path": values["pth_path"],
453
- "index_path": values["index_path"],
454
- "sg_input_device": values["sg_input_device"],
455
- "sg_output_device": values["sg_output_device"],
456
- "threhold": values["threhold"],
457
- "pitch": values["pitch"],
458
- "index_rate": values["index_rate"],
459
- "block_time": values["block_time"],
460
- "crossfade_length": values["crossfade_length"],
461
- "extra_time": values["extra_time"],
462
- }
463
- with open("values1.json", "w") as j:
464
- json.dump(settings, j)
465
- if event == "stop_vc" and self.flag_vc == True:
466
- self.flag_vc = False
467
-
468
- def set_values(self, values):
469
- if len(values["pth_path"].strip()) == 0:
470
- sg.popup(i18n("请选择pth文件"))
471
- return False
472
- if len(values["index_path"].strip()) == 0:
473
- sg.popup(i18n("请选择index文件"))
474
- return False
475
- pattern = re.compile("[^\x00-\x7F]+")
476
- if pattern.findall(values["hubert_path"]):
477
- sg.popup(i18n("hubert模型路径不可包含中文"))
478
- return False
479
- if pattern.findall(values["pth_path"]):
480
- sg.popup(i18n("pth文件路径不可包含中文"))
481
- return False
482
- if pattern.findall(values["index_path"]):
483
- sg.popup(i18n("index文件路径不可包含中文"))
484
- return False
485
- self.set_devices(values["sg_input_device"], values["sg_output_device"])
486
- self.config.hubert_path = os.path.join(current_dir, "hubert_base.pt")
487
- self.config.pth_path = values["pth_path"]
488
- self.config.index_path = values["index_path"]
489
- self.config.npy_path = values["npy_path"]
490
- self.config.threhold = values["threhold"]
491
- self.config.pitch = values["pitch"]
492
- self.config.block_time = values["block_time"]
493
- self.config.crossfade_time = values["crossfade_length"]
494
- self.config.extra_time = values["extra_time"]
495
- self.config.I_noise_reduce = values["I_noise_reduce"]
496
- self.config.O_noise_reduce = values["O_noise_reduce"]
497
- self.config.index_rate = values["index_rate"]
498
- return True
499
-
500
- def start_vc(self):
501
- torch.cuda.empty_cache()
502
- self.flag_vc = True
503
- self.block_frame = int(self.config.block_time * self.config.samplerate)
504
- self.crossfade_frame = int(self.config.crossfade_time * self.config.samplerate)
505
- self.sola_search_frame = int(0.012 * self.config.samplerate)
506
- self.delay_frame = int(0.01 * self.config.samplerate) # 往前预留0.02s
507
- self.extra_frame = int(self.config.extra_time * self.config.samplerate)
508
- self.rvc = None
509
- self.rvc = RVC(
510
- self.config.pitch,
511
- self.config.hubert_path,
512
- self.config.pth_path,
513
- self.config.index_path,
514
- self.config.npy_path,
515
- self.config.index_rate,
516
- )
517
- self.input_wav: np.ndarray = np.zeros(
518
- self.extra_frame
519
- + self.crossfade_frame
520
- + self.sola_search_frame
521
- + self.block_frame,
522
- dtype="float32",
523
- )
524
- self.output_wav: torch.Tensor = torch.zeros(
525
- self.block_frame, device=device, dtype=torch.float32
526
- )
527
- self.sola_buffer: torch.Tensor = torch.zeros(
528
- self.crossfade_frame, device=device, dtype=torch.float32
529
- )
530
- self.fade_in_window: torch.Tensor = torch.linspace(
531
- 0.0, 1.0, steps=self.crossfade_frame, device=device, dtype=torch.float32
532
- )
533
- self.fade_out_window: torch.Tensor = 1 - self.fade_in_window
534
- self.resampler1 = tat.Resample(
535
- orig_freq=self.config.samplerate, new_freq=16000, dtype=torch.float32
536
- )
537
- self.resampler2 = tat.Resample(
538
- orig_freq=self.rvc.tgt_sr,
539
- new_freq=self.config.samplerate,
540
- dtype=torch.float32,
541
- )
542
- thread_vc = threading.Thread(target=self.soundinput)
543
- thread_vc.start()
544
-
545
- def soundinput(self):
546
- """
547
- 接受音频输入
548
- """
549
- with sd.Stream(
550
- channels=2,
551
- callback=self.audio_callback,
552
- blocksize=self.block_frame,
553
- samplerate=self.config.samplerate,
554
- dtype="float32",
555
- ):
556
- while self.flag_vc:
557
- time.sleep(self.config.block_time)
558
- print("Audio block passed.")
559
- print("ENDing VC")
560
-
561
- def audio_callback(
562
- self, indata: np.ndarray, outdata: np.ndarray, frames, times, status
563
- ):
564
- """
565
- 音频处理
566
- """
567
- start_time = time.perf_counter()
568
- indata = librosa.to_mono(indata.T)
569
- if self.config.I_noise_reduce:
570
- indata[:] = nr.reduce_noise(y=indata, sr=self.config.samplerate)
571
-
572
- """noise gate"""
573
- frame_length = 2048
574
- hop_length = 1024
575
- rms = librosa.feature.rms(
576
- y=indata, frame_length=frame_length, hop_length=hop_length
577
- )
578
- db_threhold = librosa.amplitude_to_db(rms, ref=1.0)[0] < self.config.threhold
579
- # print(rms.shape,db.shape,db)
580
- for i in range(db_threhold.shape[0]):
581
- if db_threhold[i]:
582
- indata[i * hop_length : (i + 1) * hop_length] = 0
583
- self.input_wav[:] = np.append(self.input_wav[self.block_frame :], indata)
584
-
585
- # infer
586
- print("input_wav:" + str(self.input_wav.shape))
587
- # print('infered_wav:'+str(infer_wav.shape))
588
- infer_wav: torch.Tensor = self.resampler2(
589
- self.rvc.infer(self.resampler1(torch.from_numpy(self.input_wav)))
590
- )[-self.crossfade_frame - self.sola_search_frame - self.block_frame :].to(
591
- device
592
- )
593
- print("infer_wav:" + str(infer_wav.shape))
594
-
595
- # SOLA algorithm from https://github.com/yxlllc/DDSP-SVC
596
- cor_nom = F.conv1d(
597
- infer_wav[None, None, : self.crossfade_frame + self.sola_search_frame],
598
- self.sola_buffer[None, None, :],
599
- )
600
- cor_den = torch.sqrt(
601
- F.conv1d(
602
- infer_wav[None, None, : self.crossfade_frame + self.sola_search_frame]
603
- ** 2,
604
- torch.ones(1, 1, self.crossfade_frame, device=device),
605
- )
606
- + 1e-8
607
- )
608
- sola_offset = torch.argmax(cor_nom[0, 0] / cor_den[0, 0])
609
- print("sola offset: " + str(int(sola_offset)))
610
-
611
- # crossfade
612
- self.output_wav[:] = infer_wav[sola_offset : sola_offset + self.block_frame]
613
- self.output_wav[: self.crossfade_frame] *= self.fade_in_window
614
- self.output_wav[: self.crossfade_frame] += self.sola_buffer[:]
615
- if sola_offset < self.sola_search_frame:
616
- self.sola_buffer[:] = (
617
- infer_wav[
618
- -self.sola_search_frame
619
- - self.crossfade_frame
620
- + sola_offset : -self.sola_search_frame
621
- + sola_offset
622
- ]
623
- * self.fade_out_window
624
- )
625
- else:
626
- self.sola_buffer[:] = (
627
- infer_wav[-self.crossfade_frame :] * self.fade_out_window
628
- )
629
-
630
- if self.config.O_noise_reduce:
631
- outdata[:] = np.tile(
632
- nr.reduce_noise(
633
- y=self.output_wav[:].cpu().numpy(), sr=self.config.samplerate
634
- ),
635
- (2, 1),
636
- ).T
637
- else:
638
- outdata[:] = self.output_wav[:].repeat(2, 1).t().cpu().numpy()
639
- total_time = time.perf_counter() - start_time
640
- self.window["infer_time"].update(int(total_time * 1000))
641
- print("infer time:" + str(total_time))
642
-
643
- def get_devices(self, update: bool = True):
644
- """获取设备列表"""
645
- if update:
646
- sd._terminate()
647
- sd._initialize()
648
- devices = sd.query_devices()
649
- hostapis = sd.query_hostapis()
650
- for hostapi in hostapis:
651
- for device_idx in hostapi["devices"]:
652
- devices[device_idx]["hostapi_name"] = hostapi["name"]
653
- input_devices = [
654
- f"{d['name']} ({d['hostapi_name']})"
655
- for d in devices
656
- if d["max_input_channels"] > 0
657
- ]
658
- output_devices = [
659
- f"{d['name']} ({d['hostapi_name']})"
660
- for d in devices
661
- if d["max_output_channels"] > 0
662
- ]
663
- input_devices_indices = [
664
- d["index"] if "index" in d else d["name"]
665
- for d in devices
666
- if d["max_input_channels"] > 0
667
- ]
668
- output_devices_indices = [
669
- d["index"] if "index" in d else d["name"]
670
- for d in devices
671
- if d["max_output_channels"] > 0
672
- ]
673
- return (
674
- input_devices,
675
- output_devices,
676
- input_devices_indices,
677
- output_devices_indices,
678
- )
679
-
680
- def set_devices(self, input_device, output_device):
681
- """设置输出设备"""
682
- (
683
- input_devices,
684
- output_devices,
685
- input_device_indices,
686
- output_device_indices,
687
- ) = self.get_devices()
688
- sd.default.device[0] = input_device_indices[input_devices.index(input_device)]
689
- sd.default.device[1] = output_device_indices[
690
- output_devices.index(output_device)
691
- ]
692
- print("input device:" + str(sd.default.device[0]) + ":" + str(input_device))
693
- print("output device:" + str(sd.default.device[1]) + ":" + str(output_device))
694
-
695
-
696
- gui = GUI()