File size: 8,701 Bytes
617af70
843dbe7
 
 
 
 
 
 
 
 
93666f2
 
 
 
 
 
 
 
843dbe7
 
 
9b799c9
843dbe7
 
 
 
 
 
 
9b799c9
843dbe7
9b799c9
843dbe7
982ece5
f0cb4ba
 
843dbe7
 
 
 
 
 
 
edcd07f
843dbe7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
982ece5
fcfea9e
 
982ece5
93666f2
 
 
 
 
 
f0cb4ba
93666f2
 
 
 
 
 
 
 
 
 
 
982ece5
 
 
 
 
 
 
93666f2
 
 
 
 
 
 
 
6ca1ef4
55b51c7
f0cb4ba
bfe11fb
1eb2200
 
2837e16
b5421ed
 
982ece5
93666f2
b5421ed
843dbe7
 
 
 
 
b5421ed
 
843dbe7
 
 
 
 
 
b5421ed
 
843dbe7
 
 
 
b5421ed
843dbe7
 
 
 
 
 
 
 
 
 
 
b5421ed
 
 
 
 
 
 
 
 
 
843dbe7
b5421ed
6ca1ef4
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Based on: https://huggingface.co/datasets/cppe-5/blob/main/cppe-5.py.
"""ODOR dataset."""


import collections
import json
import os
import pandas as pd

import datasets
import time

import requests
import pandas as pd
from tqdm import tqdm
from multiprocessing.pool import ThreadPool
from multiprocessing import cpu_count
from requests.exceptions import MissingSchema, Timeout, ConnectionError


_CITATION = """\
TBD
"""

_DESCRIPTION = """\
Real-world applications of computer vision in the humanities require algorithms to be robust against artistic abstraction, peripheral objects, and subtle differences between fine-grained target classes. Existing datasets provide instance-level
annotations on artworks but are generally biased towards the image centre and limited with regard to detailed object classes. The proposed ODOR dataset fills this gap, offering 38,116 object-level annotations across 4,712 images, spanning an extensive set of 139 fine-grained categories. Conducting a statistical analysis, we showcase challenging dataset properties, such as a detailed set of categories, dense and overlapping objects, and spatial distribution over the whole image canvas. Furthermore, we provide an extensive baseline analysis for object detection models and highlight the challenging properties of the dataset through a set of secondary studies. Inspiring further research on artwork object detection and broader visual cultural heritage studies, the dataset challenges researchers to explore the intersection of object recognition and smell perception.
"""

_HOMEPAGE = "https://zenodo.org/record/10027116"

_LICENSE = "CC BY 4.0"

_META_URL = 'https://zenodo.org/records/10027116/files/meta.csv?download=1'
_TRAIN_JSON_URL = 'https://zenodo.org/records/10027116/files/instances_train.json?download=1'
_TEST_JSON_URL = 'https://zenodo.org/records/10027116/files/instances_test.json?download=1'

_CATEGORIES = ['ant', 'camel', 'jewellery', 'frog', 'physalis', 'celery', 'cauliflower', 'pepper', 'ranunculus', 'chess flower', 'cigarette', 'matthiola', 'cabbage', 'earring', 'dandelion', 'neroli', 'dragonfly', 'hyacinth', 'reptile/amphibia', 'apricot', 'snake', 'lizard', 'asparagus', 'spring onion', 'snowflake', 'moth', 'poppy', 'columbine', 'rabbit', 'geranium', 'crab', 'radish', 'big cat', 'jan steen jug', 'monkey', 'snail', 'bellflower', 'lilac', 'pot', 'peony', 'coffeepot', 'hazelnut', 'censer', 'artichoke', 'dahlia', 'sniffing', 'fly', 'deer', 'caterpillar', 'garlic', 'blackberry', 'chalice', 'lobster', 'necklace', 'bug', 'insect', 'prawn', 'bracelet', 'carrot', 'cornflower', 'pumpkin', 'orange', 'walnut', 'cat', 'daisy', 'forget-me-not', 'carafe', 'match', 'beer stein', 'tobacco-box', 'violet', 'pomander', 'bottle', 'candle', 'heliotrope', 'wine bottle', 'strawberry', 'pomegranate', 'whale', 'lily of the valley', 'iris', 'tobacco', 'olive', 'tobacco-packaging', 'meat', 'daffodil', 'melon', 'fire', 'petunia', 'mushroom', 'teapot', 'ring', 'pig', 'ashtray', 'cheese', 'onion', 'cup', 'nut', 'fig', 'drinking vessel', 'donkey', 'holding the nose', 'lily', 'smoke', 'bread', 'currant', 'glass without stem', 'anemone', 'mammal', 'chimney', 'smoking equipment', 'bivalve', 'butterfly', 'gloves', 'lemon', 'horse', 'plum', 'jasmine', 'pear', 'glass with stem', 'vegetable', 'carnation', 'jug', 'goat', 'fish', 'apple', 'tulip', 'cherry', 'cow', 'animal corpse', 'dog', 'fruit', 'bird', 'rose', 'peach', 'sheep', 'pipe', 'grapes', 'flower']


class ODOR(datasets.GeneratorBasedBuilder):
    """ODOR dataset."""

    VERSION = datasets.Version("0.0.1")

    def _info(self):
        features = datasets.Features(
            {
                "image_id": datasets.Value("int64"),
                "image": datasets.Image(),
                "width": datasets.Value("int32"),
                "height": datasets.Value("int32"),
                "objects": datasets.Sequence(
                    {
                        "id": datasets.Value("int64"),
                        "area": datasets.Value("int64"),
                        "bbox": datasets.Sequence(datasets.Value("float32"), length=4),
                        "category": datasets.ClassLabel(names=_CATEGORIES),
                    }
                ),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):

        def _download_file(uri, target_dir, fn, retries, overwrite=False):
            path = f'{target_dir}/{fn}'

            if os.path.exists(path) and not overwrite:
                return fn

            for i in range(retries):
                try:
                    r = requests.get(uri, stream=True, timeout=50)
                except (MissingSchema, Timeout, ConnectionError):
                    time.sleep(i)
                    continue
                if r.status_code == 200:
                    with open(path, 'wb') as f:
                        for chunk in r:
                            f.write(chunk)
                    return fn
                else:
                    time.sleep(i)
                    continue
            return fn

        def _download_one(entry, overwrite=False):
            fn, uri, target_pth, retries = entry
            fn = fn.replace("/", "_")

            return _download_file(uri, target_pth, fn, retries, overwrite)

        def _download_all(metadata_pth, target_pth, retries=3):
            df = pd.read_csv(metadata_pth)
            entries = [[*x, target_pth, retries] for x in df[['File Name', 'Image Credits']].values]
            n_processes = max(1, cpu_count() - 1)
            with ThreadPool(n_processes) as p:
                results = list(tqdm(p.imap(_download_one, entries), total=len(entries)))
            return results

        imgs_dir = f'{self.cache_dir}/images' 
        _download_file(_META_URL, '.', 'meta.csv', 3)
        if not os.path.isdir('./annotations'):
            os.makedirs('./annotations')
        _download_file(_TRAIN_JSON_URL, './annotations', 'train.json',3)
        _download_file(_TEST_JSON_URL, './annotations', 'test.json',3)
        csv_pth = f'./meta.csv'
        if not os.path.isdir(imgs_dir):
            os.makedirs(imgs_dir)
        
        img_pths = _download_all(csv_pth, imgs_dir)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "annotation_file_path": "annotations/train.json",
                    "metadata_file_path": csv_pth,
                    "img_dir": imgs_dir
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "annotation_file_path": "annotations/test.json",
                    "metadata_file_path": csv_pth,
                    "img_dir": imgs_dir
                },
            ),
        ]

    def _generate_examples(self, annotation_file_path, metadata_file_path, img_dir):

        def process_annot(annot, category_id_to_category):
            return {
                "id": annot["id"],
                "area": annot["area"],
                "bbox": annot["bbox"],
                "category": category_id_to_category[annot["category_id"]],
            }

        image_id_to_image = {}
        idx = 0

        with open(annotation_file_path) as f:
            annotations = json.load(f)
        category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]}
        image_id_to_annotations = collections.defaultdict(list)
        for annot in annotations["annotations"]:
            image_id_to_annotations[annot["image_id"]].append(annot)
        image_id_to_image = {annot["file_name"]: annot for annot in annotations["images"]}

        for path in os.listdir(img_dir):
            file_name = os.path.basename(path)
            if file_name in image_id_to_image:
                with open(f'{img_dir}/{path}','rb') as f:
                    image = image_id_to_image[file_name]
                    objects = [
                        process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]
                    ]
                    yield idx, {
                        "image_id": image["id"],
                        "image": {"path": path, "bytes": f.read()},
                        "width": image["width"],
                        "height": image["height"],
                        "objects": objects,
                    }
                    idx += 1