Datasets:
File size: 8,701 Bytes
617af70 843dbe7 93666f2 843dbe7 9b799c9 843dbe7 9b799c9 843dbe7 9b799c9 843dbe7 982ece5 f0cb4ba 843dbe7 edcd07f 843dbe7 982ece5 fcfea9e 982ece5 93666f2 f0cb4ba 93666f2 982ece5 93666f2 6ca1ef4 55b51c7 f0cb4ba bfe11fb 1eb2200 2837e16 b5421ed 982ece5 93666f2 b5421ed 843dbe7 b5421ed 843dbe7 b5421ed 843dbe7 b5421ed 843dbe7 b5421ed 843dbe7 b5421ed 6ca1ef4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
# Based on: https://huggingface.co/datasets/cppe-5/blob/main/cppe-5.py.
"""ODOR dataset."""
import collections
import json
import os
import pandas as pd
import datasets
import time
import requests
import pandas as pd
from tqdm import tqdm
from multiprocessing.pool import ThreadPool
from multiprocessing import cpu_count
from requests.exceptions import MissingSchema, Timeout, ConnectionError
_CITATION = """\
TBD
"""
_DESCRIPTION = """\
Real-world applications of computer vision in the humanities require algorithms to be robust against artistic abstraction, peripheral objects, and subtle differences between fine-grained target classes. Existing datasets provide instance-level
annotations on artworks but are generally biased towards the image centre and limited with regard to detailed object classes. The proposed ODOR dataset fills this gap, offering 38,116 object-level annotations across 4,712 images, spanning an extensive set of 139 fine-grained categories. Conducting a statistical analysis, we showcase challenging dataset properties, such as a detailed set of categories, dense and overlapping objects, and spatial distribution over the whole image canvas. Furthermore, we provide an extensive baseline analysis for object detection models and highlight the challenging properties of the dataset through a set of secondary studies. Inspiring further research on artwork object detection and broader visual cultural heritage studies, the dataset challenges researchers to explore the intersection of object recognition and smell perception.
"""
_HOMEPAGE = "https://zenodo.org/record/10027116"
_LICENSE = "CC BY 4.0"
_META_URL = 'https://zenodo.org/records/10027116/files/meta.csv?download=1'
_TRAIN_JSON_URL = 'https://zenodo.org/records/10027116/files/instances_train.json?download=1'
_TEST_JSON_URL = 'https://zenodo.org/records/10027116/files/instances_test.json?download=1'
_CATEGORIES = ['ant', 'camel', 'jewellery', 'frog', 'physalis', 'celery', 'cauliflower', 'pepper', 'ranunculus', 'chess flower', 'cigarette', 'matthiola', 'cabbage', 'earring', 'dandelion', 'neroli', 'dragonfly', 'hyacinth', 'reptile/amphibia', 'apricot', 'snake', 'lizard', 'asparagus', 'spring onion', 'snowflake', 'moth', 'poppy', 'columbine', 'rabbit', 'geranium', 'crab', 'radish', 'big cat', 'jan steen jug', 'monkey', 'snail', 'bellflower', 'lilac', 'pot', 'peony', 'coffeepot', 'hazelnut', 'censer', 'artichoke', 'dahlia', 'sniffing', 'fly', 'deer', 'caterpillar', 'garlic', 'blackberry', 'chalice', 'lobster', 'necklace', 'bug', 'insect', 'prawn', 'bracelet', 'carrot', 'cornflower', 'pumpkin', 'orange', 'walnut', 'cat', 'daisy', 'forget-me-not', 'carafe', 'match', 'beer stein', 'tobacco-box', 'violet', 'pomander', 'bottle', 'candle', 'heliotrope', 'wine bottle', 'strawberry', 'pomegranate', 'whale', 'lily of the valley', 'iris', 'tobacco', 'olive', 'tobacco-packaging', 'meat', 'daffodil', 'melon', 'fire', 'petunia', 'mushroom', 'teapot', 'ring', 'pig', 'ashtray', 'cheese', 'onion', 'cup', 'nut', 'fig', 'drinking vessel', 'donkey', 'holding the nose', 'lily', 'smoke', 'bread', 'currant', 'glass without stem', 'anemone', 'mammal', 'chimney', 'smoking equipment', 'bivalve', 'butterfly', 'gloves', 'lemon', 'horse', 'plum', 'jasmine', 'pear', 'glass with stem', 'vegetable', 'carnation', 'jug', 'goat', 'fish', 'apple', 'tulip', 'cherry', 'cow', 'animal corpse', 'dog', 'fruit', 'bird', 'rose', 'peach', 'sheep', 'pipe', 'grapes', 'flower']
class ODOR(datasets.GeneratorBasedBuilder):
"""ODOR dataset."""
VERSION = datasets.Version("0.0.1")
def _info(self):
features = datasets.Features(
{
"image_id": datasets.Value("int64"),
"image": datasets.Image(),
"width": datasets.Value("int32"),
"height": datasets.Value("int32"),
"objects": datasets.Sequence(
{
"id": datasets.Value("int64"),
"area": datasets.Value("int64"),
"bbox": datasets.Sequence(datasets.Value("float32"), length=4),
"category": datasets.ClassLabel(names=_CATEGORIES),
}
),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
def _download_file(uri, target_dir, fn, retries, overwrite=False):
path = f'{target_dir}/{fn}'
if os.path.exists(path) and not overwrite:
return fn
for i in range(retries):
try:
r = requests.get(uri, stream=True, timeout=50)
except (MissingSchema, Timeout, ConnectionError):
time.sleep(i)
continue
if r.status_code == 200:
with open(path, 'wb') as f:
for chunk in r:
f.write(chunk)
return fn
else:
time.sleep(i)
continue
return fn
def _download_one(entry, overwrite=False):
fn, uri, target_pth, retries = entry
fn = fn.replace("/", "_")
return _download_file(uri, target_pth, fn, retries, overwrite)
def _download_all(metadata_pth, target_pth, retries=3):
df = pd.read_csv(metadata_pth)
entries = [[*x, target_pth, retries] for x in df[['File Name', 'Image Credits']].values]
n_processes = max(1, cpu_count() - 1)
with ThreadPool(n_processes) as p:
results = list(tqdm(p.imap(_download_one, entries), total=len(entries)))
return results
imgs_dir = f'{self.cache_dir}/images'
_download_file(_META_URL, '.', 'meta.csv', 3)
if not os.path.isdir('./annotations'):
os.makedirs('./annotations')
_download_file(_TRAIN_JSON_URL, './annotations', 'train.json',3)
_download_file(_TEST_JSON_URL, './annotations', 'test.json',3)
csv_pth = f'./meta.csv'
if not os.path.isdir(imgs_dir):
os.makedirs(imgs_dir)
img_pths = _download_all(csv_pth, imgs_dir)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"annotation_file_path": "annotations/train.json",
"metadata_file_path": csv_pth,
"img_dir": imgs_dir
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"annotation_file_path": "annotations/test.json",
"metadata_file_path": csv_pth,
"img_dir": imgs_dir
},
),
]
def _generate_examples(self, annotation_file_path, metadata_file_path, img_dir):
def process_annot(annot, category_id_to_category):
return {
"id": annot["id"],
"area": annot["area"],
"bbox": annot["bbox"],
"category": category_id_to_category[annot["category_id"]],
}
image_id_to_image = {}
idx = 0
with open(annotation_file_path) as f:
annotations = json.load(f)
category_id_to_category = {category["id"]: category["name"] for category in annotations["categories"]}
image_id_to_annotations = collections.defaultdict(list)
for annot in annotations["annotations"]:
image_id_to_annotations[annot["image_id"]].append(annot)
image_id_to_image = {annot["file_name"]: annot for annot in annotations["images"]}
for path in os.listdir(img_dir):
file_name = os.path.basename(path)
if file_name in image_id_to_image:
with open(f'{img_dir}/{path}','rb') as f:
image = image_id_to_image[file_name]
objects = [
process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]]
]
yield idx, {
"image_id": image["id"],
"image": {"path": path, "bytes": f.read()},
"width": image["width"],
"height": image["height"],
"objects": objects,
}
idx += 1
|