Hugo Abonizio commited on
Commit
4aaf708
·
1 Parent(s): c186844

Add test set

Browse files
Files changed (2) hide show
  1. ag_news_pt.py +94 -0
  2. test.csv +0 -0
ag_news_pt.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """AG News topic classification dataset."""
18
+
19
+
20
+ import csv
21
+
22
+ import datasets
23
+ from datasets.tasks import TextClassification
24
+
25
+
26
+ _DESCRIPTION = """\
27
+ AG is a collection of more than 1 million news articles. News articles have been
28
+ gathered from more than 2000 news sources by ComeToMyHead in more than 1 year of
29
+ activity. ComeToMyHead is an academic news search engine which has been running
30
+ since July, 2004. The dataset is provided by the academic comunity for research
31
+ purposes in data mining (clustering, classification, etc), information retrieval
32
+ (ranking, search, etc), xml, data compression, data streaming, and any other
33
+ non-commercial activity. For more information, please refer to the link
34
+ http://www.di.unipi.it/~gulli/AG_corpus_of_news_articles.html .
35
+
36
+ The AG's news topic classification dataset is constructed by Xiang Zhang
37
+ ([email protected]) from the dataset above. It is used as a text
38
+ classification benchmark in the following paper: Xiang Zhang, Junbo Zhao, Yann
39
+ LeCun. Character-level Convolutional Networks for Text Classification. Advances
40
+ in Neural Information Processing Systems 28 (NIPS 2015).
41
+ """
42
+
43
+ _CITATION = """\
44
+ @inproceedings{Zhang2015CharacterlevelCN,
45
+ title={Character-level Convolutional Networks for Text Classification},
46
+ author={Xiang Zhang and Junbo Jake Zhao and Yann LeCun},
47
+ booktitle={NIPS},
48
+ year={2015}
49
+ }
50
+ """
51
+
52
+ _TRAIN_DOWNLOAD_URL = "https://huggingface.co/datasets/hugo/ag_news_pt/raw/main/train.csv"
53
+ _TEST_DOWNLOAD_URL = "https://huggingface.co/datasets/hugo/ag_news_pt/raw/main/test.csv"
54
+
55
+
56
+ class AGNews(datasets.GeneratorBasedBuilder):
57
+ """AG News topic classification dataset."""
58
+
59
+ def _info(self):
60
+ return datasets.DatasetInfo(
61
+ description=_DESCRIPTION,
62
+ features=datasets.Features(
63
+ {
64
+ "text": datasets.Value("string"),
65
+ "label": datasets.features.ClassLabel(names=["Mundo", "Esportes", "Negócios", "Tecnologia"]),
66
+ }
67
+ ),
68
+ homepage="http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html",
69
+ citation=_CITATION,
70
+ task_templates=[TextClassification(text_column="text", label_column="label")],
71
+ )
72
+
73
+ def _split_generators(self, dl_manager):
74
+ train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL)
75
+ test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL)
76
+ return [
77
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}),
78
+ datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}),
79
+ ]
80
+
81
+ def _generate_examples(self, filepath):
82
+ """Generate AG News examples."""
83
+ with open(filepath, encoding="utf-8") as csv_file:
84
+ csv_reader = csv.reader(
85
+ csv_file, quotechar='"', delimiter=",", quoting=csv.QUOTE_ALL, skipinitialspace=True
86
+ )
87
+ for id_, row in enumerate(csv_reader):
88
+ label, title, description = row
89
+ # Original labels are [1, 2, 3, 4] ->
90
+ # ['World', 'Sports', 'Business', 'Sci/Tech']
91
+ # Re-map to [0, 1, 2, 3].
92
+ label = int(label) - 1
93
+ text = " ".join((title, description))
94
+ yield id_, {"text": text, "label": label}
test.csv ADDED
The diff for this file is too large to render. See raw diff