import operator import torch import torchtext.vocab.vocab as Vocab import rdkit.Chem as Chem import hydra from config.config import cs from omegaconf import DictConfig from Model.Transformer.model import Transformer from scripts.preprocess import make_counter ,make_transforms import itertools import os device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') class BeamSearchNode(object): def __init__(self, previousNode, decoder_input, logProb, length): self.prevNode = previousNode self.dec_in = decoder_input.to('cpu') self.logp = logProb self.leng = length def eval(self, alpha=0.6): return self.logp / (((5 + self.leng) / (5 + 1)) ** alpha) def beam_decode(cfg: DictConfig, v:Vocab, model=None, input_tokens=None, Temp=1): global beam_width, nbest SOS_token = v[''] EOS_token = v[''] beam_width = cfg['translate']['beam_size'] nbest = cfg['translate']['nbest'] inf_max_len = cfg['translate']['inf_max_len'] # A batch of one input for Encoder encoder_input = input_tokens # Generate encoded features with torch.no_grad(): encoder_input = encoder_input.unsqueeze(-1) # (seq, 1), batch_size=1 encoder_output, memory_pad_mask = model.encode(encoder_input, src_pad_mask=True) # encoder_output.shape: (seq, 1, d_model) # Start with the start of the sentence token decoder_input = torch.tensor([[SOS_token]]).to(device) # (1,1) # Starting node counter = itertools.count() node = BeamSearchNode(previousNode=None, decoder_input=decoder_input, logProb=0, length=0) with torch.no_grad(): tgt_mask = torch.nn.Transformer.generate_square_subsequent_mask(decoder_input.size(1)).to(device) logits = model.decode(memory=encoder_output, tgt=decoder_input.permute(1, 0), tgt_mask=tgt_mask, memory_pad_mask=memory_pad_mask) logits = logits.permute(1, 0, 2) # logits: (seq, 1, vocab) -> (1, seq, vocab), batch=1になってる decoder_output = torch.log_softmax(logits[:, -1, :]/Temp, dim=1) # 最後のseqだけ取り出してlog_softmax, (1, vocab) tmp_beam_width = min(beam_width, decoder_output.size(1)) log_prob, indexes = torch.topk(decoder_output, tmp_beam_width) # (tmp_beam_with,) nextnodes = [] for new_k in range(tmp_beam_width): decoded_t = indexes[0][new_k].view(1, -1).to('cpu') # indexを取得, shape: (1,1) log_p = log_prob[0][new_k].item() # logpを取得 next_decoder_input = torch.cat([node.dec_in, decoded_t],dim=1) # dec_in:(1, seq) nn = BeamSearchNode(previousNode=node, decoder_input=next_decoder_input, logProb=node.logp + log_p, length=node.leng + 1) score = -nn.eval() count = next(counter) nextnodes.append((score, count, nn)) # start beam search for i in range(inf_max_len - 1): # fetch the best node if i == 0: current_nodes = sorted(nextnodes)[:tmp_beam_width] else: current_nodes = sorted(nextnodes)[:beam_width] nextnodes=[] # current_nodes = [(score, count, node), (score, count, node)...], shape:(beam_width,) scores, counts, nodes, decoder_inputs = [], [], [], [] for score, count, node in current_nodes: if node.dec_in[0][-1].item() == EOS_token: nextnodes.append((score, count, node)) else: scores.append(score) counts.append(count) nodes.append(node) decoder_inputs.append(node.dec_in) if not bool(decoder_inputs): break decoder_inputs = torch.vstack(decoder_inputs) # (batch=beam, seq) # adjust batch_size enc_out = encoder_output.repeat(1, decoder_inputs.size(0), 1) mask = memory_pad_mask.repeat(decoder_inputs.size(0), 1) with torch.no_grad(): tgt_mask = torch.nn.Transformer.generate_square_subsequent_mask(decoder_inputs.size(1)).to(device) logits = model.decode(memory=enc_out, tgt=decoder_inputs.permute(1, 0).to(device), tgt_mask=tgt_mask, memory_pad_mask=mask) logits = logits.permute(1, 0, 2) # logits: (seq, batch, vocab) -> (batch, seq, vocab) decoder_output = torch.log_softmax(logits[:, -1, :]/Temp, dim=1) # extract log_softmax of last token # decoder_output.shape = (batch, vocab) for beam, score in enumerate(scores): for token in range(EOS_token, decoder_output.size(-1)): # indexを取得, unk, pad, bosは最初から捨てる decoded_t = torch.tensor([[token]]) log_p = decoder_output[beam, token].item() next_decoder_input = torch.cat([nodes[beam].dec_in, decoded_t],dim=1) node = BeamSearchNode(previousNode=nodes[beam], decoder_input=next_decoder_input, logProb=nodes[beam].logp + log_p, length=nodes[beam].leng + 1) score = -node.eval() count = next(counter) nextnodes.append((score, count, node)) outputs = [] for score, _, n in sorted(nextnodes, key=operator.itemgetter(0))[:nbest]: # endnodes = [(score, node), (score, node)...] なのでitemgetter(0)でscoreをkeyに指定している output = n.dec_in.squeeze(0).tolist()[1:-1] # bosとeos削除 output = v.lookup_tokens(output) output = ' '.join(output) outputs.append(output) return outputs def translation(cfg:DictConfig): # make transforms and vocabulary src_train_path = hydra.utils.get_original_cwd()+cfg['translate']['src_train'] tgt_train_path = hydra.utils.get_original_cwd()+cfg['translate']['tgt_train'] src_valid_path = hydra.utils.get_original_cwd()+cfg['translate']['src_valid'] tgt_valid_path = hydra.utils.get_original_cwd()+cfg['translate']['tgt_valid'] data_dict = make_counter(src_train_path=src_train_path, tgt_train_path=tgt_train_path, src_valid_path=src_valid_path, tgt_valid_path=tgt_valid_path ) src_transforms, _, v = make_transforms(data_dict=data_dict, make_vocab=True, vocab_load_path=None) # load model d_model = cfg['model']['dim_model'] num_encoder_layers = cfg['model']['num_encoder_layers'] num_decoder_layers = cfg['model']['num_decoder_layers'] nhead = cfg['model']['nhead'] dropout = cfg['model']['dropout'] dim_ff = cfg['model']['dim_ff'] model = Transformer(d_model=d_model, nhead=nhead, num_encoder_layers=num_encoder_layers, num_decoder_layers=num_decoder_layers, dim_feedforward=dim_ff,vocab=v, dropout=dropout, device=device).to(device) ckpt = torch.load(hydra.utils.get_original_cwd() + cfg['model']['ckpt'], map_location=device) model.load_state_dict(ckpt['model_state_dict']) # make dataset src = [] src_test_path = hydra.utils.get_original_cwd() + cfg['translate']['src_test_path'] with open(src_test_path,'r') as f: for line in f: src.append(line.rstrip().split(' ')) src = src_transforms(src).to(device) rsmis =[] for i, input_tokens in enumerate(src): outputs = beam_decode(cfg=cfg, v=v, model=model, input_tokens=input_tokens) input_tokens = input_tokens.tolist() input_smi = input_tokens[0:input_tokens.index(v[''])] input_smi = v.lookup_tokens(input_smi) input_smi = ' '.join(input_smi) for output in outputs: rsmis.append(input_smi + ' >> ' + output) out_dir = cfg['translate']['out_dir'] filename = cfg['translate']['filename'] # set output file name os.makedirs(hydra.utils.get_original_cwd() + out_dir, exist_ok=True) with open(hydra.utils.get_original_cwd() + f'{out_dir}/out_beam{beam_width}_best{nbest}_file_{filename}.txt','w') as f: for rsmi in rsmis: f.write(rsmi + '\n') f.close() @hydra.main(config_path=None, config_name='config', version_base=None) def main(cfg: DictConfig): translation(cfg) if __name__ == '__main__': main()