import sys import os sys.path.append(os.path.join(os.path.dirname(__file__), '..')) import time import math import hydra from config.config import cs from omegaconf import DictConfig, OmegaConf import torch import torch.nn as nn import torch.optim as optim import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.multiprocessing as mp from Model.Transformer.model import TransformerLR, Transformer from scripts.preprocess import make_counter, make_transforms, make_dataloader from Utils.utils import tally_parameters, EarlyStopping, AverageMeter, accuracy, torch_fix_seed import datetime date = datetime.datetime.now().strftime('%Y%m%d') torch_fix_seed() def train(cfg): device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') num = 1 while True: ckpt_dir = hydra.utils.get_original_cwd()+f'/ckpts/checkpoints_{date}_{num}' if os.path.isdir(ckpt_dir): num += 1 continue else: os.makedirs(ckpt_dir, exist_ok=True) break print(f'{ckpt_dir} was created.') data_dict = make_counter(src_train_path=hydra.utils.get_original_cwd()+cfg['train']['src_train'], tgt_train_path=hydra.utils.get_original_cwd()+cfg['train']['tgt_train'], src_valid_path=hydra.utils.get_original_cwd()+cfg['train']['src_valid'], tgt_valid_path=hydra.utils.get_original_cwd()+cfg['train']['tgt_valid'] ) print('making dataloader...') src_transforms, tgt_transforms, v = make_transforms(data_dict=data_dict, make_vocab=True, vocab_load_path=None) train_dataloader, valid_dataloader = make_dataloader(datasets=data_dict['datasets'], src_transforms=src_transforms, tgt_transforms=tgt_transforms,batch_size=cfg['train']['batch_size']) print('max length of src sentence:', data_dict['src_max_len']) d_model = cfg['model']['dim_model'] nhead = cfg['model']['nhead'] dropout = cfg['model']['dropout'] dim_ff = cfg['model']['dim_ff'] num_encoder_layers = cfg['model']['num_encoder_layers'] num_decoder_layers = cfg['model']['num_decoder_layers'] model = Transformer(d_model=d_model, nhead=nhead, num_encoder_layers=num_encoder_layers, num_decoder_layers=num_decoder_layers, dim_feedforward=dim_ff,vocab=v, dropout=dropout, device=device).to(device) cudnn.benchmark = True if device == 'cuda': model = torch.nn.DataParallel(model) # make parallel torch.backends.cudnn.benchmark = True # count the number of parameters. n_params, enc, dec = tally_parameters(model) print('encoder: %d' % enc) print('decoder: %d' % dec) print('* number of parameters: %d' % n_params) lr = cfg['train']['lr'] betas = cfg['train']['betas'] patience = cfg['train']['patience'] optimizer = optim.Adam(model.parameters(), lr=lr, betas=betas) scheduler = TransformerLR(optimizer, warmup_epochs=8000) label_smoothing = cfg['train']['label_smoothing'] criterion = nn.CrossEntropyLoss(label_smoothing=label_smoothing, reduction='none', ignore_index=v[''] ) earlystopping = EarlyStopping(patience=patience, ckpt_dir=ckpt_dir) step_num = cfg['train']['step_num'] log_interval_step = cfg['train']['log_interval'] valid_interval_steps = cfg['train']['val_interval'] save_interval_steps = cfg['train']['save_interval'] accum_count = 1 valid_len = 0 for _, d in enumerate(valid_dataloader): valid_len += len(d[0]) step = 0 tgt_mask = nn.Transformer.generate_square_subsequent_mask(data_dict['tgt_max_len']-1).to(device) scaler = torch.cuda.amp.GradScaler() total_loss = 0 accum_loss = 0 model.train() start_time = time.time() print('start training...') while step < step_num: for i, data in enumerate(train_dataloader): src, tgt = data[0].to(device).permute(1, 0), data[1].to(device).permute(1, 0) tgt_input = tgt[:-1, :] # (seq, batch) tgt_output = tgt[1:, :] # shifted right with torch.amp.autocast('cuda'): outputs = model(src=src, tgt=tgt_input, tgt_mask=tgt_mask, src_pad_mask=True, tgt_pad_mask=True, memory_pad_mask=True) # out: (seq_length, batch_size, vocab_size) loss = (criterion(outputs.reshape(-1, v.__len__()), tgt_output.reshape(-1)).sum() / len(data[0])) / accum_count scaler.scale(loss).backward() accum_loss += loss.detach().item() if ((i + 1) % accum_count == 0) or ((i + 1) == len(train_dataloader)): scaler.unscale_(optimizer) torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5) scaler.step(optimizer) scaler.update() scheduler.step() optimizer.zero_grad() step += 1 total_loss += accum_loss accum_loss = 0 if (step + 1) % log_interval_step == 0: lr = scheduler.get_last_lr()[0] cur_loss = total_loss / log_interval_step ppl = math.exp(cur_loss) end_time = time.time() print(f'| step {step+1} | lr {lr:03.5f} | loss {cur_loss:5.5f} | ppl {ppl:8.5f} | time per {log_interval_step} step {end_time - start_time:3.1f}|') total_loss = 0 start_time = time.time() # validation step if (step + 1) % valid_interval_steps == 0: model.eval() top1 = AverageMeter() perfect_acc_top1 = AverageMeter() eval_total_loss = 0. with torch.no_grad(): for val_i, val_data in enumerate(valid_dataloader): src, tgt = val_data[0].to(device).permute(1, 0), val_data[1].to(device).permute(1, 0) tgt_input = tgt[:-1, :] tgt_output = tgt[1:, :] outputs = model(src=src, tgt=tgt_input, tgt_mask=tgt_mask, src_pad_mask=True, tgt_pad_mask=True, memory_pad_mask=True) tmp_eval_loss = criterion(outputs.reshape(-1, v.__len__()), tgt_output.reshape(-1)).sum() / len(val_data[0]) eval_total_loss += tmp_eval_loss.detach().item() partial_top1, perfect_acc = accuracy(outputs.reshape(-1, v.__len__()), tgt_output.reshape(-1), batch_size=tgt_output.size(1), v=v) top1.update(partial_top1, src.size(1)) perfect_acc_top1.update(perfect_acc, src.size(1)) eval_loss = eval_total_loss / (val_i + 1) print(f'validation step {step+1} | validation loss {eval_loss:5.5f} | partial top1 accuracy {top1.avg:.3f} | perfect top1 accuracy {perfect_acc_top1.avg:.3f}') if (step + 1) % save_interval_steps == 0: earlystopping(val_loss=eval_loss, step=step, optimizer=optimizer, cur_loss=cur_loss, model=model) model.train() start_time = time.time() if earlystopping.early_stop: print('Early Stopping!') break if earlystopping.early_stop: break @hydra.main(config_path=None, config_name='config', version_base=None) def main(cfg: DictConfig): train(cfg) if __name__ == '__main__': main()