import warnings import hydra import os from config.config import cs from omegaconf import DictConfig warnings.filterwarnings('ignore') from collections import Counter import torch from torch.utils.data import Dataset from torch.utils.data import DataLoader from torchtext.vocab import vocab import torchtext.transforms as T class smi_Dataset(Dataset): def __init__(self, src, tgt): super().__init__() self.src = src self.tgt = tgt def __getitem__(self, i): src = self.src[i] tgt = self.tgt[i] return src, tgt def __len__(self): return len(self.src) def make_smi_list(path, counter): smi_list = [] max_length = 0 with open(path,'r') as f: for line in f: smi_list.append(line.rstrip().split(' ')) for i in smi_list: counter.update(i) if len(i) > max_length: max_length = len(i) return smi_list, max_length def make_counter(src_train_path, tgt_train_path, src_valid_path, tgt_valid_path) -> dict: src_counter = Counter() tgt_counter = Counter() src_train, max_src_train = make_smi_list(src_train_path, src_counter) tgt_train, max_tgt_train = make_smi_list(tgt_train_path, tgt_counter) src_valid, max_src_valid = make_smi_list(src_valid_path, src_counter) tgt_valid, max_tgt_valid = make_smi_list(tgt_valid_path, tgt_counter) src_max_length = max([max_src_train, max_src_valid]) tgt_max_length = max([max_tgt_train, max_tgt_valid]) tgt_max_length = tgt_max_length+2 # bosとeosの分を加算 datasets = [] datasets.append(src_train) datasets.append(tgt_train) datasets.append(src_valid) datasets.append(tgt_valid) return {'src_counter': src_counter, 'tgt_counter': tgt_counter, 'src_max_len': src_max_length, 'tgt_max_len': tgt_max_length, 'datasets': datasets} def make_transforms(data_dict, make_vocab: bool = False, vocab_load_path=None): if make_vocab == False and vocab_load_path is None: raise ValueError('The make_transforms function is not being passed the vocab_load_path.') if make_vocab: counter = data_dict['src_counter'] + data_dict['tgt_counter'] v = vocab(counter, min_freq=5, specials=(['', '', '', ''])) v.set_default_index(v['']) else: v = torch.load(vocab_load_path) src_transforms = T.Sequential( T.VocabTransform(v), T.ToTensor(padding_value=v['']), T.PadTransform(max_length=data_dict['src_max_len'], pad_value=v['']) # srcはbosとeosが不要 ) tgt_transforms = T.Sequential( T.VocabTransform(v), T.AddToken(token=v[''], begin=True), T.AddToken(token=v[''], begin=False), T.ToTensor(padding_value=v['']), T.PadTransform(max_length=data_dict['tgt_max_len'],pad_value=v['']) ) return src_transforms, tgt_transforms, v def make_dataloader(datasets, src_transforms, tgt_transforms, batch_size): ''' datasets: output of make_counter() transforms: output of make_vocab() ''' src_train = datasets[0] tgt_train = datasets[1] src_valid = datasets[2] tgt_valid = datasets[3] src_train, src_valid = src_transforms(src_train), src_transforms(src_valid) tgt_train, tgt_valid = tgt_transforms(tgt_train), tgt_transforms(tgt_valid) train_dataset = smi_Dataset(src=src_train, tgt=tgt_train) valid_dataset = smi_Dataset(src=src_valid, tgt=tgt_valid) train_dataloader = DataLoader(dataset=train_dataset, batch_size=batch_size, drop_last=True, shuffle=True, num_workers=2, pin_memory=True ) valid_dataloader = DataLoader(dataset=valid_dataset, batch_size=batch_size, drop_last=False, shuffle=False, num_workers=2, pin_memory=True ) return train_dataloader, valid_dataloader @hydra.main(config_path=None, config_name='config', version_base=None) def main(cfg: DictConfig): # Loading data print('Saving vocabulary...') src_train_path = hydra.utils.get_original_cwd()+cfg['prep']['src_train'] tgt_train_path = hydra.utils.get_original_cwd()+cfg['prep']['tgt_train'] src_valid_path = hydra.utils.get_original_cwd()+cfg['prep']['src_valid'] tgt_valid_path = hydra.utils.get_original_cwd()+cfg['prep']['tgt_valid'] data_dict= make_counter(src_train_path=src_valid_path, tgt_train_path=tgt_train_path, src_valid_path=src_train_path, tgt_valid_path=tgt_valid_path) _, _, v = make_transforms(data_dict=data_dict, make_vocab=True, vocab_load_path=None) torch.save(v, hydra.utils.get_original_cwd()+'/vocab.pth') print('done.') if __name__ == '__main__': main()