import math from hydra.core.config_store import ConfigStore from dataclasses import dataclass @dataclass class PreProcess: augm_size: int = 1 src_train: str = '/data/USPTO/src_train.txt' tgt_train: str = '/data/USPTO/tgt_train.txt' src_valid: str = '/data/USPTO/src_valid.txt' tgt_valid: str = '/data/USPTO/tgt_valid.txt' batch_size: int = 256 @dataclass class ModelConfig: dim_model: int = 512 num_encoder_layers: int = 6 num_decoder_layers: int = 6 nhead: int = 8 dropout: float = 0.1 dim_ff: int = 2048 ckpt:str = '/ckpts/Transformer/ckpt_conditional.pth' @dataclass class TrainConfig: src_train: str = '/data/USPTO/src_train.txt' tgt_train: str = '/data/USPTO/tgt_train.txt' src_valid: str = '/data/USPTO/src_valid.txt' tgt_valid: str = '/data/USPTO/tgt_valid.txt' batch_size: int = 128 label_smoothing: float = 0.0 lr: float = 0.001 betas: tuple = (0.9, 0.998) step_num: int = 500000 # set training steps patience: int = 10 log_interval : int = 100 val_interval: int = 1000 save_interval: int = 10000 @dataclass class TranslateConfig: src_train: str = '/data/USPTO/src_train.txt' tgt_train: str = '/data/USPTO/tgt_train.txt' src_valid: str = '/data/USPTO/src_valid.txt' tgt_valid: str = '/data/USPTO/tgt_valid.txt' GCN_ckpt: str = '/ckpts/GCN/GCN.pth' out_dir: str = '/translation' src_test_path: str = '/data/input/test.txt' annotated_templates: str = '/data/beamsearch_template_list.txt' filename: str = 'test' GCN_num_sampling: int = 10 inf_max_len: int = 256 nbest: int = 10 beam_size: int = 10 @dataclass class GCN_TrainConfig: train: str = '/data/USPTO/src_train.txt' valid: str = '/data/USPTO/src_valid.txt' test: str = '/data/USPTO/src_test.txt' batch_size: int = 256 dim: int = 256 n_conv_hidden: int = 1 n_mlp_hidden: int = 3 dropout: float = 0.1 lr: float = 0.0004 epochs: int = 100 patience: int = 5 save_path: str = '/ckpts/GCN' @dataclass class MCTSConfig: src_train: str = '/data/USPTO/src_train.txt' tgt_train: str = '/data/USPTO/tgt_train.txt' src_valid: str = '/data/USPTO/src_valid.txt' tgt_valid: str = '/data/USPTO/tgt_valid.txt' n_step: int = 200 max_depth: int = 10 in_smiles_file: str = '/data/input/init_smiles_drd2.txt' out_dir: str = '/mcts_out' ucb_c: float = 1/math.sqrt(2) reward_name: str = 'DRD2' # 'DRD2' or 'QED' ckpt_Transformer: str = '/ckpts/Transformer/ckpt_conditional.pth' ckpt_GCN: str = '/ckpts/GCN/GCN.pth' beam_width:int = 10 nbest:int = 10 exp_num_sampling:int = 10 rollout_depth:int = 2 roll_num_sampling:int = 5 @dataclass class Config: prep: PreProcess = PreProcess() model: ModelConfig = ModelConfig() train: TrainConfig = TrainConfig() translate: TranslateConfig = TranslateConfig() GCN_train: GCN_TrainConfig = GCN_TrainConfig() mcts: MCTSConfig = MCTSConfig() cs = ConfigStore.instance() cs.store(name="config", node=Config)