import numpy as np import math from tqdm import tqdm from copy import deepcopy import random import numpy as np import warnings warnings.filterwarnings('ignore') from rdkit import RDLogger RDLogger.DisableLog('rdApp.*') from rdkit.Chem import Descriptors import torch device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def smi_tokenizer(smi): ''' Tokenize a SMILES molecule or reaction ''' import re pattern = '(\[[^\]]+]|Br?|Cl?|N|O|S|P|F|I|b|c|n|o|s|p|\(|\)|\.|=|#|-|\+|\\\\|\/|:|~|@|\?|>|\*|\$|\%[0-9]{2}|[0-9])' regex = re.compile(pattern) tokens = [token for token in regex.findall(smi)] assert smi == ''.join(tokens) return ' '.join(tokens) class Node: def __init__(self): self.parent = None self.template = None self.path = [] self.depth = -100 self.visit = 1 self.children = [] self.imm_score = 0 self.cum_score = 0 self.c = 1 self.id = -1 self.rollout_result = ('None', -1000) def add_Node(self, c): c.parent = self c.depth = self.depth + 1 self.children.append(c) def calc_UCB(self): if self.visit == 0: ucb = 1e+6 else: ucb = self.cum_score/self.visit + self.c*math.sqrt(2*math.log(self.parent.visit)/self.visit) return ucb def select_children(self): children_ucb = [] for cn in self.children: children_ucb.append(cn.calc_UCB()) max_ind = np.random.choice(np.where(np.array(children_ucb) == max(children_ucb))[0]) return self.children[max_ind] def select_children_rand(self): indices = list(range(0, len(self.children))) ind = np.random.choice(indices) return self.children[ind] class RootNode(Node): def __init__(self, c=1/np.sqrt(2)): super().__init__() self.smi = '&&' self.depth = 0 self.c = c class NormalNode(Node): def __init__(self, smi, c=1/np.sqrt(2)): super().__init__() self.smi = smi self.c = c self.template = None def remove_Node(self): self.parent.children.remove(self) def read_smilesset(path): smiles_list = [] with open(path) as f: for smiles in f: smiles_list.append(smiles.rstrip()) return smiles_list # caluculate the number of parameters def tally_parameters(model): n_params = sum([p.nelement() for p in model.parameters()]) enc = 0 dec = 0 for name, param in model.named_parameters(): if 'encoder' in name: enc += param.nelement() elif 'decoder' or 'generator' in name: dec += param.nelement() return n_params, enc, dec class EarlyStopping: def __init__(self, patience=10, ckpt_dir=None): '''引数: 最小値の非更新数カウンタ、表示設定、モデル格納path''' self.patience = patience #設定ストップカウンタ self.counter = 0 #現在のカウンタ値 self.best_score = None #ベストスコア self.early_stop = False #ストップフラグ self.val_loss_min = np.Inf #前回のベストスコア記憶用 self.path = ckpt_dir #ベストモデル格納path def __call__(self, val_loss, step, optimizer, cur_loss, model): ''' 特殊(call)メソッド 実際に学習ループ内で最小lossを更新したか否かを計算させる部分 ''' score = -val_loss if self.best_score is None: #1Epoch目の処理 self.best_score = score #1Epoch目はそのままベストスコアとして記録する self.checkpoint(val_loss, step, optimizer, cur_loss, model) #記録後にモデルを保存してスコア表示する elif score < self.best_score: # ベストスコアを更新できなかった場合 self.counter += 1 #ストップカウンタを+1 print(f'Validation loss increased ({self.val_loss_min:.6f} --> {val_loss:.6f}).') self.checkpoint(val_loss, step, optimizer, cur_loss, model) print(f'EarlyStopping counter: {self.counter} out of {self.patience}') #現在のカウンタを表示する if self.counter >= self.patience: #設定カウントを上回ったらストップフラグをTrueに変更 self.early_stop = True else: #ベストスコアを更新した場合 self.best_score = score #ベストスコアを上書き print(f'Validation loss decreased! ({self.val_loss_min:.6f} --> {val_loss:.6f}) Saving model ...') self.checkpoint(val_loss, step, optimizer, cur_loss, model) #モデルを保存してスコア表示 self.counter = 0 #ストップカウンタリセット def checkpoint(self, val_loss, step, optimizer, cur_loss, model): torch.save({'step': step, 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'loss': cur_loss,}, f'{self.path}/ckpt_{step+1}.pth') self.val_loss_min = val_loss #その時のlossを記録する class AverageMeter(object): '''Computes and stores the average and current value''' def __init__(self): self.reset() def reset(self): self.value = 0 # latest value self.avg = 0 self.sum = 0 self.count = 0 def update(self, value, n=1): self.value = value self.sum += value * n self.count += n self.avg = self.sum / self.count # def accuracy(output, target, batch_size, v=None): # ''' # Computes the accuracy of top1 prediction # output: (seq_length*batch_size, num_tokens) # target: (seq_length*batch_size) # ''' # pad_mask = (target != v['']) # padはFalse, それ以外はTrue # true_pos = torch.nonzero(pad_mask).squeeze().tolist() # out_extracted = output[true_pos] # t_extracted = target[true_pos] # _, pred = out_extracted.topk(1, 1, True, True) # arg of topk: (k, dim=1, largest=True, sorted=True) # pred = pred.t() # (seq*batch, maxk) -> (maxk, seq*batch) # correct = pred.eq(t_extracted.reshape(1, -1).expand_as(pred)) # target:(seq*batch, 1) -> (1, seq*batch) -> (maxk, seq*batch) # # Tensor.eq: compute element-wise equality, correct: bool matrix # correct_rate = (correct[0].float().sum(0, keepdim=True)) / len(t_extracted) # # compute accuracy per whole molecule # target = target.reshape(-1, batch_size) # output = output.reshape(-1, batch_size, v.__len__()) # _, pred = output.topk(10, 2, True, True) # top1, top5, top10 = pred[:, :, 0], pred[:, :, 0:4], pred[:, :, 0:9] # pred_list = [top1, top5, top10] # perfect_acc_list = [] # EOS_token = v[''] # for pred in pred_list: # correct_cum = 0 # for i in range(batch_size): # t = target[:, i].tolist() # eos_idx = t.index(EOS_token) # t = t[0:eos_idx] # p = pred[:, i].tolist() # p = p[0:len(t)] # if t == p: # correct_cum += 1 # perfect_acc_list.append(correct_cum / batch_size) # return correct_rate.item(), perfect_acc_list def accuracy(output, target, batch_size, v=None): ''' Computes the accuracy of top1 prediction output: (seq_length*batch_size, num_tokens) target: (seq_length*batch_size) ''' pad_mask = (target != v['']) # padはFalse, それ以外はTrue true_pos = torch.nonzero(pad_mask).squeeze().tolist() out_extracted = output[true_pos] t_extracted = target[true_pos] _, pred = out_extracted.topk(1, 1, True, True) # arg of topk: (k, dim=1, largest=True, sorted=True) pred = pred.t() # (seq*batch, maxk) -> (maxk, seq*batch) correct = pred.eq(t_extracted.reshape(1, -1).expand_as(pred)) # target:(seq*batch, 1) -> (1, seq*batch) -> (maxk, seq*batch) # Tensor.eq: compute element-wise equality, correct: bool matrix correct_rate = (correct[0].float().sum(0, keepdim=True)) / len(t_extracted) # compute accuracy per whole molecule target = target.reshape(-1, batch_size) output = output.reshape(-1, batch_size, v.__len__()) _, pred = output.topk(1, 2, True, True) pred = pred.squeeze() # (seq, batch) -> (batch, seq) correct_cum = 0 EOS_token = v[''] for i in range(batch_size): t = target[:, i].tolist() eos_idx = t.index(EOS_token) t = t[0:eos_idx] p = pred[:, i].tolist() p = p[0:len(t)] if t == p: correct_cum += 1 perfect_acc = correct_cum / batch_size return correct_rate.item(), perfect_acc def calc_topk_perfect_acc(x, target, batch_size, EOS): ''' x: predicted tensor of shape (seq, batch, k) target: (seq, batch) ''' correct_cum = 0 if x.dim() < 3: x = x.unsqueeze(-1) for i in range(batch_size): t = target[:, i].tolist() eos_idx = t.index(EOS) t = t[0:eos_idx] for j in range(x.size(2)): p = x[:, i, j].tolist() p = p[0:len(t)] if t == p: correct_cum += 1 break return correct_cum / batch_size def MW_checker(mol, threshold:int = 500): MW = Descriptors.ExactMolWt(mol) if MW > threshold: return False else: return True def is_empty(li): return all(not sublist for sublist in li) def torch_fix_seed(seed=42): # Python random random.seed(seed) # Numpy np.random.seed(seed) # Pytorch torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True torch.use_deterministic_algorithms = True # 例えばimport utils とした場合、そのutils.__name__ にはモジュール名(ファイル名)が格納される # このファイルをimportで呼び出した場合、print(utils.__name__) の出力結果は'utils' # ただし、importではなくコマンドラインで直接実行された場合は__name__ に __main__ が格納される # よって、以下はimportされたときには実行されず、コマンドラインで実行されたときにだけ動く if __name__ == '__main__': smiles_list = read_smilesset('Data/input/250k_rndm_zinc_drugs_clean.smi') vocab = [] for smiles in tqdm(smiles_list): p = parse_smiles(smiles) vocab.extend(p) vocab = list(set(vocab)) vocab.sort() print(vocab)