import numpy as np import pandas as pd import pickle import hydra import warnings warnings.filterwarnings('ignore') import rdkit.Chem as Chem from rdkit import RDLogger RDLogger.DisableLog('rdApp.*') from rdkit.Chem import AllChem, QED def getReward(name, receptor_path=None, pdbqt_path=None, VinaGPU_path=None, VinaGPU_config=None): if name == "QED": return QEDReward() elif name == 'DRD2': with open(hydra.utils.get_original_cwd() + '/Model/QSAR/drd2_qsar_optimized.pkl', mode='rb') as f: qsar_model = pickle.load(f) return QSAR_Reward(qsar_model) elif name == 'AKT1': with open(hydra.utils.get_original_cwd() + '/Model/QSAR/akt1_qsar_optimized.pkl', mode='rb') as f: qsar_model = pickle.load(f) return QSAR_Reward(qsar_model) class Reward: def __init__(self): self.vmin = -100 self.max_r = -10000 return def reward(self): raise NotImplementedError() class QSAR_Reward(Reward): def __init__(self, qsar_model, *args, **kwargs): super().__init__(*args, **kwargs) self.qsar_model = qsar_model def reward(self, score_que:list = None): max_smi = None scores = [] mols = [Chem.MolFromSmiles(smi) for smi in score_que] ecfps = [] None_indices = [] for i, mol in enumerate(mols): if mol is not None: ecfps.append(AllChem.GetMorganFingerprintAsBitVect(mol, 3, nBits=2048)) else: None_indices.append(i) ecfps.append([0]*2048) if len(ecfps) == 0: return [], None, None ecfp6_array = np.array(ecfps) X = pd.DataFrame(ecfp6_array, columns=[f'bit_{i}' for i in range(2048)]) y_pred = self.qsar_model.predict_proba(X)[:, 1] for None_idx in None_indices: y_pred[None_idx] = np.nan max_score = np.nanmax(y_pred) for smi, score in zip(score_que, y_pred): if score == np.nan: pass elif score == max_score: max_smi = smi scores.append((smi, score)) return scores, max_smi, max_score def reward_remove_nan(self, score_que:list = None): max_smi = None scores = [] # convert smiles to mol if mol is not none. valid_smiles = [] mols = [] for smi in score_que: mol = Chem.MolFromSmiles(smi) if mol is not None: valid_smiles.append(smi) mols.append(mol) ecfps = [] for i, mol in enumerate(mols): if mol is not None: ecfps.append(AllChem.GetMorganFingerprintAsBitVect(mol, 3, nBits=2048)) if len(ecfps) == 0: return [], None, None ecfp6_array = np.array(ecfps) X = pd.DataFrame(ecfp6_array, columns=[f'bit_{i}' for i in range(2048)]) y_pred = self.qsar_model.predict_proba(X)[:, 1] max_score = np.nanmax(y_pred) for smi, score in zip(valid_smiles, y_pred): if score == max_score: max_smi = smi scores.append((smi, score)) return scores, max_smi, max_score class QEDReward(Reward): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.vmin = 0 def reward(self, smi): mol = Chem.MolFromSmiles(smi) try: score = QED.qed(mol) except: score = None return score