|
import operator |
|
import torch |
|
import torchtext.vocab.vocab as Vocab |
|
import rdkit.Chem as Chem |
|
import hydra |
|
from config.config import cs |
|
from omegaconf import DictConfig |
|
|
|
from Model.Transformer.model import Transformer |
|
from scripts.preprocess import make_counter ,make_transforms |
|
|
|
import itertools |
|
import os |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
class BeamSearchNode(object): |
|
def __init__(self, previousNode, decoder_input, logProb, length): |
|
self.prevNode = previousNode |
|
self.dec_in = decoder_input.to('cpu') |
|
self.logp = logProb |
|
self.leng = length |
|
|
|
def eval(self, alpha=0.6): |
|
return self.logp / (((5 + self.leng) / (5 + 1)) ** alpha) |
|
|
|
|
|
def beam_decode(cfg: DictConfig, v:Vocab, model=None, input_tokens=None, Temp=1): |
|
global beam_width, nbest |
|
SOS_token = v['<bos>'] |
|
EOS_token = v['<eos>'] |
|
beam_width = cfg['translate']['beam_size'] |
|
nbest = cfg['translate']['nbest'] |
|
inf_max_len = cfg['translate']['inf_max_len'] |
|
|
|
|
|
encoder_input = input_tokens |
|
|
|
|
|
with torch.no_grad(): |
|
encoder_input = encoder_input.unsqueeze(-1) |
|
encoder_output, memory_pad_mask = model.encode(encoder_input, src_pad_mask=True) |
|
|
|
|
|
decoder_input = torch.tensor([[SOS_token]]).to(device) |
|
|
|
|
|
counter = itertools.count() |
|
|
|
node = BeamSearchNode(previousNode=None, |
|
decoder_input=decoder_input, |
|
logProb=0, length=0) |
|
|
|
with torch.no_grad(): |
|
tgt_mask = torch.nn.Transformer.generate_square_subsequent_mask(decoder_input.size(1)).to(device) |
|
logits = model.decode(memory=encoder_output, tgt=decoder_input.permute(1, 0), tgt_mask=tgt_mask, memory_pad_mask=memory_pad_mask) |
|
logits = logits.permute(1, 0, 2) |
|
decoder_output = torch.log_softmax(logits[:, -1, :]/Temp, dim=1) |
|
|
|
|
|
tmp_beam_width = min(beam_width, decoder_output.size(1)) |
|
log_prob, indexes = torch.topk(decoder_output, tmp_beam_width) |
|
nextnodes = [] |
|
for new_k in range(tmp_beam_width): |
|
decoded_t = indexes[0][new_k].view(1, -1).to('cpu') |
|
log_p = log_prob[0][new_k].item() |
|
next_decoder_input = torch.cat([node.dec_in, decoded_t],dim=1) |
|
nn = BeamSearchNode(previousNode=node, |
|
decoder_input=next_decoder_input, |
|
logProb=node.logp + log_p, |
|
length=node.leng + 1) |
|
score = -nn.eval() |
|
count = next(counter) |
|
nextnodes.append((score, count, nn)) |
|
|
|
|
|
for i in range(inf_max_len - 1): |
|
|
|
if i == 0: |
|
current_nodes = sorted(nextnodes)[:tmp_beam_width] |
|
else: |
|
current_nodes = sorted(nextnodes)[:beam_width] |
|
|
|
nextnodes=[] |
|
|
|
scores, counts, nodes, decoder_inputs = [], [], [], [] |
|
for score, count, node in current_nodes: |
|
if node.dec_in[0][-1].item() == EOS_token: |
|
nextnodes.append((score, count, node)) |
|
else: |
|
scores.append(score) |
|
counts.append(count) |
|
nodes.append(node) |
|
decoder_inputs.append(node.dec_in) |
|
if not bool(decoder_inputs): |
|
break |
|
|
|
decoder_inputs = torch.vstack(decoder_inputs) |
|
|
|
|
|
enc_out = encoder_output.repeat(1, decoder_inputs.size(0), 1) |
|
mask = memory_pad_mask.repeat(decoder_inputs.size(0), 1) |
|
|
|
with torch.no_grad(): |
|
tgt_mask = torch.nn.Transformer.generate_square_subsequent_mask(decoder_inputs.size(1)).to(device) |
|
logits = model.decode(memory=enc_out, tgt=decoder_inputs.permute(1, 0).to(device), tgt_mask=tgt_mask, memory_pad_mask=mask) |
|
logits = logits.permute(1, 0, 2) |
|
decoder_output = torch.log_softmax(logits[:, -1, :]/Temp, dim=1) |
|
|
|
|
|
for beam, score in enumerate(scores): |
|
for token in range(EOS_token, decoder_output.size(-1)): |
|
decoded_t = torch.tensor([[token]]) |
|
log_p = decoder_output[beam, token].item() |
|
next_decoder_input = torch.cat([nodes[beam].dec_in, decoded_t],dim=1) |
|
node = BeamSearchNode(previousNode=nodes[beam], |
|
decoder_input=next_decoder_input, |
|
logProb=nodes[beam].logp + log_p, |
|
length=nodes[beam].leng + 1) |
|
score = -node.eval() |
|
count = next(counter) |
|
nextnodes.append((score, count, node)) |
|
|
|
outputs = [] |
|
for score, _, n in sorted(nextnodes, key=operator.itemgetter(0))[:nbest]: |
|
|
|
output = n.dec_in.squeeze(0).tolist()[1:-1] |
|
output = v.lookup_tokens(output) |
|
output = ' '.join(output) |
|
outputs.append(output) |
|
|
|
return outputs |
|
|
|
|
|
def translation(cfg:DictConfig): |
|
|
|
src_train_path = hydra.utils.get_original_cwd()+cfg['translate']['src_train'] |
|
tgt_train_path = hydra.utils.get_original_cwd()+cfg['translate']['tgt_train'] |
|
src_valid_path = hydra.utils.get_original_cwd()+cfg['translate']['src_valid'] |
|
tgt_valid_path = hydra.utils.get_original_cwd()+cfg['translate']['tgt_valid'] |
|
data_dict = make_counter(src_train_path=src_train_path, |
|
tgt_train_path=tgt_train_path, |
|
src_valid_path=src_valid_path, |
|
tgt_valid_path=tgt_valid_path |
|
) |
|
src_transforms, _, v = make_transforms(data_dict=data_dict, make_vocab=True, vocab_load_path=None) |
|
|
|
|
|
d_model = cfg['model']['dim_model'] |
|
num_encoder_layers = cfg['model']['num_encoder_layers'] |
|
num_decoder_layers = cfg['model']['num_decoder_layers'] |
|
nhead = cfg['model']['nhead'] |
|
dropout = cfg['model']['dropout'] |
|
dim_ff = cfg['model']['dim_ff'] |
|
model = Transformer(d_model=d_model, nhead=nhead, num_encoder_layers=num_encoder_layers, num_decoder_layers=num_decoder_layers, |
|
dim_feedforward=dim_ff,vocab=v, dropout=dropout, device=device).to(device) |
|
ckpt = torch.load(hydra.utils.get_original_cwd() + cfg['model']['ckpt'], map_location=device) |
|
model.load_state_dict(ckpt['model_state_dict']) |
|
|
|
|
|
src = [] |
|
src_test_path = hydra.utils.get_original_cwd() + cfg['translate']['src_test_path'] |
|
with open(src_test_path,'r') as f: |
|
for line in f: |
|
src.append(line.rstrip().split(' ')) |
|
src = src_transforms(src).to(device) |
|
|
|
rsmis =[] |
|
for i, input_tokens in enumerate(src): |
|
outputs = beam_decode(cfg=cfg, v=v, model=model, input_tokens=input_tokens) |
|
input_tokens = input_tokens.tolist() |
|
input_smi = input_tokens[0:input_tokens.index(v['<pad>'])] |
|
input_smi = v.lookup_tokens(input_smi) |
|
input_smi = ' '.join(input_smi) |
|
for output in outputs: |
|
rsmis.append(input_smi + ' >> ' + output) |
|
|
|
out_dir = cfg['translate']['out_dir'] |
|
filename = cfg['translate']['filename'] |
|
|
|
|
|
os.makedirs(hydra.utils.get_original_cwd() + out_dir, exist_ok=True) |
|
with open(hydra.utils.get_original_cwd() + f'{out_dir}/out_beam{beam_width}_best{nbest}_file_{filename}.txt','w') as f: |
|
for rsmi in rsmis: |
|
f.write(rsmi + '\n') |
|
f.close() |
|
|
|
@hydra.main(config_path=None, config_name='config', version_base=None) |
|
def main(cfg: DictConfig): |
|
translation(cfg) |
|
|
|
if __name__ == '__main__': |
|
main() |