File size: 3,692 Bytes
e0d0d76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
import numpy as np
import pandas as pd
import pickle
import hydra

import warnings
warnings.filterwarnings('ignore')

import rdkit.Chem as Chem
from rdkit import RDLogger
RDLogger.DisableLog('rdApp.*')
from rdkit.Chem import AllChem, QED

def getReward(name,

              receptor_path=None,

              pdbqt_path=None,

              VinaGPU_path=None,

              VinaGPU_config=None):
    if name == "QED":
        return QEDReward()
    elif name == 'DRD2':
        with open(hydra.utils.get_original_cwd() + '/Model/QSAR/drd2_qsar_optimized.pkl', mode='rb') as f:
            qsar_model = pickle.load(f)
        return QSAR_Reward(qsar_model)
    elif name == 'AKT1':
        with open(hydra.utils.get_original_cwd() + '/Model/QSAR/akt1_qsar_optimized.pkl', mode='rb') as f:
            qsar_model = pickle.load(f)
        return QSAR_Reward(qsar_model)


class Reward:
    def __init__(self):
        self.vmin = -100
        self.max_r = -10000
        return

    def reward(self):
        raise NotImplementedError()

class QSAR_Reward(Reward):
    def __init__(self, qsar_model, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.qsar_model = qsar_model

    def reward(self, score_que:list = None):
        max_smi = None
        scores = []
        mols = [Chem.MolFromSmiles(smi) for smi in score_que]
        ecfps = []
        None_indices = []
        for i, mol in enumerate(mols):
            if mol is not None:
                ecfps.append(AllChem.GetMorganFingerprintAsBitVect(mol, 3, nBits=2048))
            else:
                None_indices.append(i)
                ecfps.append([0]*2048)
        if len(ecfps) == 0:
            return [], None, None
        ecfp6_array = np.array(ecfps)
        X = pd.DataFrame(ecfp6_array, columns=[f'bit_{i}' for i in range(2048)])
        y_pred = self.qsar_model.predict_proba(X)[:, 1]
        for None_idx in None_indices:
            y_pred[None_idx] = np.nan
        max_score = np.nanmax(y_pred)
        for smi, score in zip(score_que, y_pred):
            if score == np.nan:
                pass
            elif score == max_score:
                max_smi = smi
            scores.append((smi, score))
        return scores, max_smi, max_score
    
    def reward_remove_nan(self, score_que:list = None):
        max_smi = None
        scores = []
        # convert smiles to mol if mol is not none.
        valid_smiles = []
        mols = []
        for smi in score_que:
            mol = Chem.MolFromSmiles(smi)
            if mol is not None:
                valid_smiles.append(smi)
                mols.append(mol)
        ecfps = []
        for i, mol in enumerate(mols):
            if mol is not None:
                ecfps.append(AllChem.GetMorganFingerprintAsBitVect(mol, 3, nBits=2048))
        if len(ecfps) == 0:
            return [], None, None
        ecfp6_array = np.array(ecfps)
        X = pd.DataFrame(ecfp6_array, columns=[f'bit_{i}' for i in range(2048)])
        y_pred = self.qsar_model.predict_proba(X)[:, 1]
        max_score = np.nanmax(y_pred)
        for smi, score in zip(valid_smiles, y_pred):
            if score == max_score:
                max_smi = smi
            scores.append((smi, score))
        return scores, max_smi, max_score

class QEDReward(Reward):
    def __init__(self, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.vmin = 0

    def reward(self, smi):
        mol = Chem.MolFromSmiles(smi)
        try:
            score = QED.qed(mol)
        except:
            score = None

        return score