#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: bvani """ import numpy as np from sys import stdout from openmmplumed import PlumedForce from simtk.openmm.app import * from simtk.openmm import * from simtk.unit import * #from openmm.app import * #from openmm import * #from openmm.unit import * import pdbfixer import random import random random.seed(5) def RegSpaceClustering(z, min_dist, max_centers=200, batch_size=100,randomseed=0,periodicity=0): '''Regular space clustering. Args: data: ndarray containing (n,d)-shaped float data max_centers: the maximum number of cluster centers to be determined, integer greater than 0 required min_dist: the minimal distances between cluster centers ''' random.seed(5) num_observations, d = z.shape p = np.hstack((0,np.random.RandomState(seed=randomseed).permutation(num_observations-1)+1)) data = z[p] center_list = data[0, :].copy().reshape(d,1) centerids=[p[0]+1] i = 1 while i < num_observations: x_active = data[i:i+batch_size, :] differences=np.abs(np.expand_dims(center_list.T,0) - np.expand_dims(x_active,1)) differences=np.max(np.stack((differences,periodicity-differences)),axis=0) distances = np.sqrt((np.square(differences)).sum(axis=-1)) indice = tuple(np.nonzero(np.all(distances > min_dist, axis=-1))[0]) if len(indice) > 0: # the first element will be used #print(center_list.shape,x_active.shape,x_active[indice[0]].shape) center_list = np.hstack((center_list, x_active[indice[0]].reshape(d,1))) centerids.append(p[i+indice[0]]+1) i += indice[0] else: i += batch_size if len(centerids) >= max_centers: print("%i centers: Exceeded the maximum number of cluster centers!\n"%len(centerids)) print("Please increase dmin!\n") raise ValueError print("Found %i centers!"%len(centerids)) return center_list,centerids def fix_pdb(index): """ fixes the raw pdb from colabfold using pdbfixer. This needs to be performed to cleanup the pdb and to start simulation Fixes performed: missing residues, missing atoms and missing Terminals """ raw_pdb=f'pred_{index}.pdb'; # fixer instance fixer = pdbfixer.PDBFixer(raw_pdb) #finding and adding missing residues including terminals fixer.findMissingResidues() fixer.findMissingAtoms() fixer.addMissingAtoms() out_handle = open(f'fixed_{index}.pdb','w') PDBFile.writeFile(fixer.topology, fixer.positions, out_handle,keepIds=True) def run_unbiased(on_gpu,plumedfile,dt,temp,freq,nstep,index): """ Runs an unbiased simulation on the cluster center using openMM. The MD engine also uses plumed for on the fly calculations input : raw pdb from colabfold forcefields : amber03 and tip3p output : fixed_{index}.pdb, unb_{index}.pdb, COLVAR_unb """ if plumedfile != "None": use_plumed=True outfreq = 0 chkpt_freq=0 save_chkpt_file=False print(f'We are at {os.getcwd()}') #fixing PDBs to avoid missing residue or terminal issues fix_pdb(index); pdb_fixed=f'fixed_{index}.pdb' #Get the structure and assign force field pdb = PDBFile(pdb_fixed) forcefield = ForceField('amber03.xml', 'tip3p.xml') # Placing in a box and adding hydrogens, ions and water modeller = Modeller(pdb.topology, pdb.positions) modeller.addHydrogens(forcefield) modeller.addSolvent(forcefield, padding=0.5*nanometers, model='tip3p', neutralize=True, positiveIon='Na+', negativeIon='Cl-') #Create simulation system and assign integrator system = forcefield.createSystem(modeller.topology,nonbondedMethod=PME,nonbondedCutoff=1.2*nanometer, switchDistance=1.0*nanometer,constraints=HBonds) integrator = NoseHooverIntegrator(temp*kelvin, freq/picoseconds, dt*picoseconds); if use_plumed: fid=open(plumedfile,'r') ff=fid.read() force=PlumedForce(ff) system.addForce(force) #system.addForce(MonteCarloBarostat(press*bar, temp*kelvin)) #Pressure control if on_gpu: platform = Platform.getPlatformByName('CUDA') properties = {'Precision': 'double','CudaCompiler':'/usr/local/cuda/bin/nvcc'} simulation = Simulation(modeller.topology, system, integrator, platform) else: platform = Platform.getPlatformByName('CPU') simulation = Simulation(modeller.topology, system, integrator, platform) simulation.context.setPositions(modeller.positions) simulation.minimizeEnergy() minim_positions = simulation.context.getState(getPositions=True,enforcePeriodicBox=True).getPositions() PDBFile.writeFile(simulation.topology, minim_positions, open(f'minim_{index}.pdb', 'w')) if save_chkpt_file: simulation.reporters.append(CheckpointReporter(chkpt_fname, chkpt_freq)) simulation.step(nstep) positions = simulation.context.getState(getPositions=True,enforcePeriodicBox=True).getPositions() PDBFile.writeFile(simulation.topology, positions, open(f'unb_{index}.pdb', 'w')) def make_biased_plumed(plumedfile,weights,colvar,height,biasfactor,width1,width2,gridmin1,gridmin2,gridmax1,gridmax2,temperature): f_unb=open(plumedfile) f=open('plumed_biased.dat','w') lines=f_unb.readlines() p=lines.pop(-2) w0=",".join([str(weights[0][i]) for i in range (len(weights[0]))]) w1=",".join([str(weights[1][i]) for i in range (len(weights[1]))]) lines.insert(-1,"\nsigma1: COMBINE ARG=%s COEFFICIENTS=%s PERIODIC=NO"%(colvar,w0)) lines.insert(-1,"\nsigma2: COMBINE ARG=%s COEFFICIENTS=%s PERIODIC=NO"%(colvar,w1)) lines.insert(-1,"\nMETAD ...\n \ LABEL=metad\n \ ARG=sigma1,sigma2\n \ PACE=500 HEIGHT=%f TEMP=%i\n \ BIASFACTOR=%i\n \ SIGMA=%f,%f\n \ FILE=HILLS GRID_MIN=%f,%f GRID_MAX=%f,%f GRID_BIN=200,200\n \ CALC_RCT RCT_USTRIDE=500\n \ ... METAD\n"%(height,temperature,biasfactor,width1,width2,gridmin1,gridmin2,gridmax1,gridmax2)) f.writelines(lines) f.write("\n PRINT ARG=%s,sigma1,sigma2,metad.rbias STRIDE=500 FILE=COLVAR_biased.dat"%colvar) f.close() def run_biased(on_gpu,plumedfile,dt,temp,freq,nstep,index,save_chkpt_file=True,chkpt_freq=500000,restart=False): #Saves check point file after every 500000 steps (by default) use_plumed=True outfreq = 5000 #Pdb from previous unbiased run pdb = PDBFile(f'unb_{index}.pdb') forcefield = ForceField('amber03.xml', 'tip3p.xml') system = forcefield.createSystem(pdb.topology,nonbondedMethod=PME,nonbondedCutoff=1.2*nanometer, switchDistance=1.0*nanometer,constraints=HBonds) integrator = NoseHooverIntegrator(temp*kelvin, freq/picoseconds, dt*picoseconds) if use_plumed: fid=open(plumedfile,'r') ff=fid.read() force=PlumedForce(ff) system.addForce(force) #system.addForce(MonteCarloBarostat(press*bar, temp*kelvin)) #pressure control if on_gpu: platform = Platform.getPlatformByName('CUDA') properties = {'Precision': 'double','CudaCompiler':'/usr/local/cuda/bin/nvcc'} simulation = Simulation(pdb.topology, system, integrator, platform) else: platform = Platform.getPlatformByName('CPU') simulation = Simulation(pdb.topology, system, integrator, platform) simulation.context.setPositions(pdb.positions) if restart: simulation.loadCheckpoint('chkptfile.chk') if save_chkpt_file: simulation.reporters.append(CheckpointReporter('chkptfile.chk', chkpt_freq)) simulation.reporters.append(StateDataReporter(stdout, outfreq, step=True)) simulation.step(nstep) positions = simulation.context.getState(getPositions=True,enforcePeriodicBox=True).getPositions() PDBFile.writeFile(simulation.topology, positions, open(f'final_{index}.pdb', 'w')) #Functions for CSP demo only def triginvert(x,sinx,cosx): if cosx<0: if sinx>0: x=np.pi-x elif sinx<0: x=-np.pi-x return x def getTrp8(CVs): sinx=CVs[:,12] cosx=CVs[:,13] x=np.arcsin(sinx) chi1= chi2=[triginvert(a,b,c) for (a,b,c) in zip(x,sinx,cosx)] sinx=CVs[:,116] cosx=CVs[:,117] x=np.arcsin(sinx) chi2=[triginvert(a,b,c) for (a,b,c) in zip(x,sinx,cosx)] return np.asarray(chi1),np.asarray(chi2)