{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "accelerator": "GPU", "colab": { "provenance": [], "machine_shape": "hm", "gpuType": "T4", "include_colab_link": true }, "kernelspec": { "display_name": "Python 3", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.8.10" } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "view-in-github", "colab_type": "text" }, "source": [ "\"Open" ] }, { "cell_type": "code", "source": [ "#@title Run this cell for mounting google drive\n", "from google.colab import drive\n", "drive.mount('/content/drive')" ], "metadata": { "id": "QBbOBkzuJsAE", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "f1a2771b-1b6e-4a10-edfd-991d25189a22", "cellView": "form" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "Mounted at /content/drive\n" ] } ] }, { "cell_type": "code", "source": [ "#@title Install dependencies\n", "%%time\n", "from google.colab import files\n", "import os\n", "import re\n", "import hashlib\n", "import random\n", "\n", "!mkdir colabfold\n", "%cd /content/colabfold\n", "\n", "from sys import version_info\n", "python_version = f\"{version_info.major}.{version_info.minor}\"\n", "\n", "\n", "import os\n", "USE_AMBER = False\n", "USE_TEMPLATES = \"none\"\n", "PYTHON_VERSION = python_version\n", "\n", "if not os.path.isfile(\"COLABFOLD_READY\"):\n", " print(\"installing colabfold...\")\n", " os.system(\"pip install -q --no-warn-conflicts 'colabfold[alphafold-minus-jax] @ git+https://github.com/sokrypton/ColabFold'\")\n", " os.system(\"pip install --upgrade dm-haiku\")\n", " os.system(\"ln -s /usr/local/lib/python3.*/dist-packages/colabfold colabfold\")\n", " os.system(\"ln -s /usr/local/lib/python3.*/dist-packages/alphafold alphafold\")\n", " # patch for jax > 0.3.25\n", " os.system(\"sed -i 's/weights = jax.nn.softmax(logits)/logits=jnp.clip(logits,-1e8,1e8);weights=jax.nn.softmax(logits)/g' alphafold/model/modules.py\")\n", " os.system(\"touch COLABFOLD_READY\")\n", "\n", "if USE_AMBER or USE_TEMPLATES:\n", " if not os.path.isfile(\"CONDA_READY\"):\n", " print(\"installing conda...\")\n", " os.system(\"wget -qnc https://github.com/conda-forge/miniforge/releases/latest/download/Mambaforge-Linux-x86_64.sh\")\n", " os.system(\"bash Mambaforge-Linux-x86_64.sh -bfp /usr/local\")\n", " os.system(\"mamba config --set auto_update_conda false\")\n", " os.system(\"touch CONDA_READY\")\n", "\n", "if USE_TEMPLATES and not os.path.isfile(\"HH_READY\") and USE_AMBER and not os.path.isfile(\"AMBER_READY\"):\n", " print(\"installing hhsuite and amber...\")\n", " os.system(f\"mamba install -y -c conda-forge -c bioconda kalign2=2.04 hhsuite=3.3.0 openmm=7.7.0 python='{PYTHON_VERSION}' pdbfixer\")\n", " os.system(\"touch HH_READY\")\n", " os.system(\"touch AMBER_READY\")\n", "else:\n", " if USE_TEMPLATES and not os.path.isfile(\"HH_READY\"):\n", " print(\"installing hhsuite...\")\n", " os.system(f\"mamba install -y -c conda-forge -c bioconda kalign2=2.04 hhsuite=3.3.0 python='{PYTHON_VERSION}'\")\n", " os.system(\"touch HH_READY\")\n", " if USE_AMBER and not os.path.isfile(\"AMBER_READY\"):\n", " print(\"installing amber...\")\n", " os.system(f\"mamba install -y -c conda-forge openmm=7.7.0 python='{PYTHON_VERSION}' pdbfixer\")\n", " os.system(\"touch AMBER_READY\")" ], "metadata": { "id": "AzIKiDiCaHAn", "outputId": "c17e4366-41c6-4878-bb58-17ba1041fe83", "colab": { "base_uri": "https://localhost:8080/" }, "cellView": "form" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "/content/colabfold\n", "installing colabfold...\n", "installing conda...\n", "installing hhsuite...\n", "CPU times: user 345 ms, sys: 55 ms, total: 400 ms\n", "Wall time: 1min 26s\n" ] } ] }, { "cell_type": "code", "metadata": { "id": "kOblAo-xetgx", "cellView": "form", "outputId": "1df05123-7899-42aa-ea45-e0c8f35c2cc2", "colab": { "base_uri": "https://localhost:8080/" } }, "source": [ "#@title Input protein sequence(s) and MSA parameters\n", "%cd /content/colabfold\n", "\n", "query_sequence = 'MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGG' #@param {type:\"string\"}\n", "#@markdown - Use `:` to specify inter-protein chainbreaks for **modeling complexes** (supports homo- and hetro-oligomers). For example **PI...SK:PI...SK** for a homodimer\n", "max_msa = \"4:8\" #@param [\"1024:2048\", \"512:1024\", \"256:512\",\"128:256\", \"64:128\", \"32:64\", \"16:32\",\"8:16\",\"4:8\", \"2:4\",\"1:2\"]\n", "#@markdown - Choose `max_msa_cluster:max_extra_msa` to reduce the length of MSA used in initialization of AF2 (prescribed 16:32 and/or 8:16)\n", "num_seeds = 4 #@param [4,8,16,32,64,128] {type:\"raw\"}\n", "#@markdown - For a `num_seeds` value rMSA give `num_seeds*5` structures (prescribed 128)\n", "msa_mode = \"mmseqs2\" #@param [\"mmseqs2\", \"no_msa\",\"custom\"]\n", "#@markdown - Choose the type of MSA input `[mmseqs2, custom, no msa]`\n", "\n", "# Initializations and creating working dir\n", "jobname = 'test'\n", "custom_template_path = None\n", "use_templates = False\n", "pair_mode = \"unpaired_paired\"\n", "query_sequence = \"\".join(query_sequence.split())\n", "basejobname = \"\".join(jobname.split())\n", "basejobname = re.sub(r'\\W+', '', basejobname)\n", "model_type = \"auto\"\n", "num_recycles = 1\n", "recycle_early_stop_tolerance = None\n", "relax_max_iterations = 200\n", "pairing_strategy = \"greedy\"\n", "use_dropout = True\n", "save_all = True\n", "save_recycles = False\n", "save_to_google_drive = False\n", "dpi = 200\n", "def add_hash(x,y):\n", " return x+\"_\"+hashlib.sha1(y.encode()).hexdigest()[:5]\n", "jobname = add_hash(basejobname, query_sequence)\n", "# check if directory with jobname exists\n", "def check(folder):\n", " if os.path.exists(folder):\n", " return False\n", " else:\n", " return True\n", "if not check(jobname):\n", " n = 0\n", " while not check(f\"{jobname}_{n}\"): n += 1\n", " jobname = f\"{jobname}_{n}\"\n", "os.makedirs(jobname, exist_ok=True)\n", "\n", "#save queries\n", "queries_path = os.path.join(jobname, f\"{jobname}.csv\")\n", "with open(queries_path, \"w\") as text_file:\n", " text_file.write(f\"id,sequence\\n{jobname},{query_sequence}\")\n", "\n", "# MSA decision\n", "if \"mmseqs2\" in msa_mode:\n", " a3m_file = os.path.join(jobname,f\"{jobname}.a3m\")\n", "\n", "elif msa_mode == \"custom\":\n", " a3m_file = os.path.join(jobname,f\"{jobname}.custom.a3m\")\n", " if not os.path.isfile(a3m_file):\n", " custom_msa_dict = files.upload()\n", " custom_msa = list(custom_msa_dict.keys())[0]\n", " header = 0\n", " import fileinput\n", " for line in fileinput.FileInput(custom_msa,inplace=1):\n", " if line.startswith(\">\"):\n", " header = header + 1\n", " if not line.rstrip():\n", " continue\n", " if line.startswith(\">\") == False and header == 1:\n", " query_sequence = line.rstrip()\n", " print(line, end='')\n", "\n", " os.rename(custom_msa, a3m_file)\n", " queries_path=a3m_file\n", " print(f\"moving {custom_msa} to {a3m_file}\")\n", "else:\n", " a3m_file = os.path.join(jobname,f\"{jobname}.single_sequence.a3m\")\n", " with open(a3m_file, \"w\") as text_file:\n", " text_file.write(\">1\\n%s\" % query_sequence)\n", "\n", "print(\"sequence\",query_sequence)\n", "print(\"length\",len(query_sequence.replace(\":\",\"\")))\n", "\n" ], "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "/content/colabfold\n", "sequence MQIFVKTLTGKTITLEVEPSDTIENVKAKIQDKEGIPPDQQRLIFAGKQLEDGRTLSDYNIQKESTLHLVLRLRGG\n", "length 76\n" ] } ] }, { "cell_type": "code", "source": [ "#@title Run Prediction\n", "display_images = True\n", "\n", "import sys\n", "import warnings\n", "warnings.simplefilter(action='ignore', category=FutureWarning)\n", "from Bio import BiopythonDeprecationWarning\n", "warnings.simplefilter(action='ignore', category=BiopythonDeprecationWarning)\n", "from pathlib import Path\n", "from colabfold.download import download_alphafold_params, default_data_dir\n", "from colabfold.utils import setup_logging\n", "from colabfold.batch import get_queries, run, set_model_type\n", "from colabfold.plot import plot_msa_v2\n", "\n", "import os\n", "import numpy as np\n", "try:\n", " K80_chk = os.popen('nvidia-smi | grep \"Tesla K80\" | wc -l').read()\n", "except:\n", " K80_chk = \"0\"\n", " pass\n", "if \"1\" in K80_chk:\n", " print(\"WARNING: found GPU Tesla K80: limited to total length < 1000\")\n", " if \"TF_FORCE_UNIFIED_MEMORY\" in os.environ:\n", " del os.environ[\"TF_FORCE_UNIFIED_MEMORY\"]\n", " if \"XLA_PYTHON_CLIENT_MEM_FRACTION\" in os.environ:\n", " del os.environ[\"XLA_PYTHON_CLIENT_MEM_FRACTION\"]\n", "\n", "from colabfold.colabfold import plot_protein\n", "from pathlib import Path\n", "import matplotlib.pyplot as plt\n", "\n", "def input_features_callback(input_features):\n", " plot_msa_v2(input_features)\n", " plt.show()\n", " plt.close()\n", "\n", "def prediction_callback(protein_obj, length,\n", " prediction_result, input_features, mode):\n", " model_name, relaxed = mode\n", " if False:\n", " fig = plot_protein(protein_obj, Ls=length, dpi=150)\n", " plt.show()\n", " plt.close()\n", "\n", "result_dir = jobname\n", "log_filename = os.path.join(jobname,\"log.txt\")\n", "if not os.path.isfile(log_filename) or 'logging_setup' not in globals():\n", " setup_logging(Path(log_filename))\n", " logging_setup = True\n", "\n", "queries, is_complex = get_queries(queries_path)\n", "model_type = set_model_type(is_complex, model_type)\n", "\n", "if \"multimer\" in model_type and max_msa is not None:\n", " use_cluster_profile = False\n", "else:\n", " use_cluster_profile = True\n", "num_relax=0\n", "download_alphafold_params(model_type, Path(\".\"))\n", "results = run(\n", " queries=queries,\n", " result_dir=result_dir,\n", " use_templates=use_templates,\n", " custom_template_path=custom_template_path,\n", " num_relax=num_relax,\n", " msa_mode=msa_mode,\n", " model_type=model_type,\n", " num_models=5,\n", " num_recycles=num_recycles,\n", " relax_max_iterations=relax_max_iterations,\n", " recycle_early_stop_tolerance=recycle_early_stop_tolerance,\n", " num_seeds=num_seeds,\n", " use_dropout=use_dropout,\n", " model_order=[1,2,3,4,5],\n", " is_complex=is_complex,\n", " data_dir=Path(\".\"),\n", " keep_existing_results=False,\n", " rank_by=\"auto\",\n", " pair_mode=pair_mode,\n", " pairing_strategy=pairing_strategy,\n", " stop_at_score=float(100),\n", " prediction_callback=prediction_callback,\n", " dpi=dpi,\n", " zip_results=False,\n", " save_all=save_all,\n", " max_msa=max_msa,\n", " use_cluster_profile=use_cluster_profile,\n", " input_features_callback=input_features_callback,\n", " save_recycles=save_recycles,\n", " user_agent=\"colabfold/google-colab-main\",\n", ")\n", "\n", "\n", "## save the results\n", "os.chdir('/content/colabfold/')\n", "if not os.path.isdir('/content/structures'):\n", " os.mkdir('/content/structures')\n", "else:\n", " print('Already exists!!!')\n", " os.system('mv /content/structures /content/backup')\n", " os.mkdir('/content/structures')\n", "\n", "for i in range(num_seeds*5):\n", " tag = results[\"rank\"][0][i]\n", " jobname_prefix = \".custom\" if msa_mode == \"custom\" else \"\"\n", " pdb_filename = f\"{jobname}/{jobname}{jobname_prefix}_unrelaxed_{tag}.pdb\"\n", " json_filename = f\"{jobname}/{jobname}{jobname_prefix}_scores_{tag}.json\"\n", " os.system(f'cp {pdb_filename} /content/structures/pred_{i+1}.pdb')\n", " os.system(f'cp {json_filename} /content/structures/pred_{i+1}.json')\n", "os.system(f'cp {jobname}/config.json /content/structures/.')\n", "os.system(f'cp {jobname}/{jobname}.a3m /content/structures/msa.a3m')\n", "os.system(f'rm -r {jobname}')\n", "os.chdir('/content/')\n", "os.system('zip -r structures.zip structures')\n", "\n", "print('All structures are saved in `/content/structures.zip`')" ], "metadata": { "cellView": "form", "id": "mbaIO9pWjaN0", "outputId": "d70d51b4-f5a3-43c9-b028-173eeda4ebcb", "colab": { "base_uri": "https://localhost:8080/", "height": 1000 } }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "2024-04-25 20:01:38,894 Running on GPU\n", "2024-04-25 20:01:38,897 Found 4 citations for tools or databases\n", "2024-04-25 20:01:38,897 Query 1/1: test_7686d (length 76)\n" ] }, { "output_type": "stream", "name": "stderr", "text": [ "COMPLETE: 100%|██████████| 150/150 [elapsed: 00:03 remaining: 00:00]\n" ] }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAqkAAAHWCAYAAABUuhBOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACWv0lEQVR4nOzdd3hTZcMG8DtJM7qSUrpoKVD2kD3LXi9VcKCoICjLBTLEigK+TBUQFCwigqCAi08ElVdliUyBsjfILhSBLqBNd9rkfH+URmJTaNKT5KS5f9fVi+bk5DlPQpNz51lHJgiCACIiIiIiCZG7ugJERERERP/GkEpEREREksOQSkRERESSw5BKRERERJLDkEpEREREksOQSkRERESSw5BKRERERJLDkEpEREREksOQSkRERESSw5BKRERERJLDkEpUAZw8eRJPP/00qlevDo1Gg4iICPznP//BwoULXV01IiIiu8gEQRBcXQkist/evXvRrVs3VKtWDUOGDEFYWBiuXbuGffv24dKlS7h48aKrq0hERGQzhlQiN9enTx8cPHgQ58+fR0BAgMV9KSkpCAkJcU3FyOlMJhMMBgM0Go2rq0JEVG7s7idyc5cuXUKjRo1KBFQAVgPqt99+i5YtW8Lb2xuBgYEYMGAArl27VmK/pUuXolatWvD29kabNm3w559/omvXrujatat5n5UrV0Imk+HKlSsWj92xYwdkMhl27NhhsX3//v14+OGHodPp4OPjgy5dumDPnj0W+0yfPh0ymQwXL17E0KFDERAQAJ1Oh2HDhiEnJ8fq82nTpg18fHxQqVIldO7cGb///rvFPhs3bkSnTp3g6+sLf39/9OnTB6dPny5RljXp6el44403UKNGDajValStWhWDBw9GWlqaeZ+UlBS8+OKLCA0NhUajQdOmTfHVV1+Z7y8oKEBgYCCGDRtWony9Xg+NRoPx48ebt+Xn52PatGmoXbs21Go1IiMj8fbbbyM/P9/isTKZDKNHj8Z3332HRo0aQa1WY9OmTQCAjz76CO3bt0flypXh7e2Nli1bYu3atSWOn5ubi7FjxyIoKAj+/v54/PHHcf36dchkMkyfPt1i3+vXr2P48OEIDQ2FWq1Go0aNsHz58jK9jkREtmJIJXJz1atXx+HDh3Hq1KkH7jtz5kwMHjwYderUwfz58zFu3Dhs3boVnTt3Rnp6unm/L7/8Eq+++irCwsIwd+5cdOjQAY8//rjVMFtW27ZtQ+fOnaHX6zFt2jTMmjUL6enp6N69Ow4cOFBi/2effRaZmZmYPXs2nn32WaxcuRIzZsyw2GfGjBl44YUXoFQq8e6772LGjBmIjIzEtm3bzPt888036NOnD/z8/DBnzhxMmTIFZ86cQceOHUuE63/LyspCp06dsHDhQvTq1QsLFizAiBEjcPbsWfz9998AikJe165d8c0332DQoEH48MMPodPpMHToUCxYsAAAoFQq8eSTT2LdunUwGAwWx1i3bh3y8/MxYMAAAEWtoY8//jg++ugjPPbYY1i4cCH69u2Ljz/+GP3797f6ur7xxhvo378/FixYgBo1agAAFixYgObNm+Pdd9/FrFmz4OXlhWeeeQbr16+3ePzQoUOxcOFC9O7dG3PmzIG3tzf69OlT4jjJyclo164d/vjjD4wePRoLFixA7dq18eKLLyIuLu6+ryMRkV0EInJrv//+u6BQKASFQiFER0cLb7/9trB582bBYDBY7HflyhVBoVAIM2fOtNh+8uRJwcvLy7zdYDAIISEhQrNmzYT8/HzzfkuXLhUACF26dDFvW7FihQBASEhIsChz+/btAgBh+/btgiAIgslkEurUqSPExMQIJpPJvF9OTo4QFRUl/Oc//zFvmzZtmgBAGD58uEWZTz75pFC5cmXz7QsXLghyuVx48sknBaPRaLFv8TEyMzOFgIAA4eWXX7a4PykpSdDpdCW2/9vUqVMFAMJPP/1U4r7iY8TFxQkAhG+//dZ8n8FgEKKjowU/Pz9Br9cLgiAImzdvFgAIv/76q0U5vXv3FmrWrGm+/c033whyuVz4888/LfZbsmSJAEDYs2ePeRsAQS6XC6dPny5Rv5ycHIvbBoNBeOihh4Tu3bubtx0+fFgAIIwbN85i36FDhwoAhGnTppm3vfjii0KVKlWEtLQ0i30HDBgg6HS6EscjIiovtqQSubn//Oc/iI+Px+OPP47jx49j7ty5iImJQUREBH755Rfzfj/99BNMJhOeffZZpKWlmX/CwsJQp04dbN++HQBw6NAhpKSkYMSIEVCpVObHDx06FDqdzq46Hjt2DBcuXMDAgQNx69Yt87Gzs7PRo0cP7Nq1CyaTyeIxI0aMsLjdqVMn3Lp1C3q9HkBRC6TJZMLUqVMhl1t+lMlkMgDAli1bkJ6ejueee87iOSsUCrRt29b8nEvz448/omnTpnjyySdL3Fd8jA0bNiAsLAzPPfec+T6lUomxY8ciKysLO3fuBAB0794dQUFBWL16tXm/O3fuYMuWLRYtpGvWrEGDBg1Qv359izp3794dAErUuUuXLmjYsGGJ+nl7e1scJyMjA506dcKRI0fM24uHBrz22msWjx0zZozFbUEQ8OOPP+Kxxx6DIAgW9YqJiUFGRoZFuUREYvBydQWIqPxat26Nn376CQaDAcePH8fPP/+Mjz/+GE8//TSOHTuGhg0b4sKFCxAEAXXq1LFahlKpBABcvXoVAErsp1QqUbNmTbvqd+HCBQDAkCFDSt0nIyMDlSpVMt+uVq2axf3F9925cwdarRaXLl2CXC63GtD+fdzigPdvWq32vvW+dOkS+vXrd999rl69ijp16pQIyg0aNDDfDwBeXl7o168fVq1ahfz8fKjVavz0008oKCiwCKkXLlzAX3/9heDgYKvHS0lJsbgdFRVldb/ffvsN77//Po4dO2YxlrU4XBfXTS6Xlyijdu3aFrdTU1ORnp6OpUuXYunSpWWqFxFReTGkElUgKpUKrVu3RuvWrVG3bl0MGzYMa9aswbRp02AymSCTybBx40YoFIoSj/Xz87P5ePcGnnsZjUaL28WtpB9++CGaNWtm9TH/Pr61OgJFrXplVXzcb775BmFhYSXu9/Jy7kfggAED8Pnnn2Pjxo3o27cvfvjhB9SvXx9NmzY172MymdC4cWPMnz/fahmRkZEWt+9tMS32559/4vHHH0fnzp3x2WefoUqVKlAqlVixYgVWrVplc72LX8fnn3++1C8aTZo0sblcIqL7YUglqqBatWoFALh58yYAoFatWhAEAVFRUahbt26pj6tevTqAoha9e1sgCwoKkJCQYBGoils37510BfzTelisVq1aAIpaLnv27GnnM7JUq1YtmEwmnDlzptTgW3zckJAQu45bq1atB05Iq169Ok6cOAGTyWTRmnr27Fnz/cU6d+6MKlWqYPXq1ejYsSO2bduG//73vyWOefz4cfTo0aPULwEP8uOPP0Kj0WDz5s1Qq9Xm7StWrChRd5PJhISEBIuW83+vrRscHAx/f38YjUbR/v+IiB6EY1KJ3Nz27dutti5u2LABAFCvXj0AwFNPPQWFQoEZM2aU2F8QBNy6dQtAUbgNDg7GkiVLLGair1y5skQYLQ6Bu3btMm8zGo0luoRbtmyJWrVq4aOPPkJWVlaJuqamppb16Zr17dsXcrkc7777bonxrMXPLyYmBlqtFrNmzUJBQYHNx+3Xr595+MS/FR+jd+/eSEpKshhrWlhYiIULF8LPzw9dunQxb5fL5Xj66afx66+/4ptvvkFhYWGJGfvPPvssrl+/jmXLlpU4Zm5uLrKzs+9bZ6CoFVomk1m0aF+5cgXr1q2z2C8mJgYA8Nlnn1ls//eVyhQKBfr164cff/zRami35/+PiOhB2JJK5ObGjBmDnJwcPPnkk6hfvz4MBgP27t2L1atXo0aNGua1OWvVqoX3338fkyZNwpUrV9C3b1/4+/sjISEBP//8M1555RWMHz8eSqUS77//Pl599VV0794d/fv3R0JCAlasWFFiTGqjRo3Qrl07TJo0Cbdv30ZgYCC+//57FBYWWuwnl8vxxRdf4JFHHkGjRo0wbNgwRERE4Pr169i+fTu0Wi1+/fVXm5537dq18d///hfvvfceOnXqhKeeegpqtRoHDx5EeHg4Zs+eDa1Wi8WLF+OFF15AixYtMGDAAAQHByMxMRHr169Hhw4d8Omnn5Z6jLfeegtr167FM888g+HDh6Nly5a4ffs2fvnlFyxZsgRNmzbFK6+8gs8//xxDhw7F4cOHUaNGDaxduxZ79uxBXFwc/P39Lcrs378/Fi5ciGnTpqFx48bmsavFXnjhBfzwww8YMWIEtm/fjg4dOsBoNOLs2bP44YcfsHnzZnMreWn69OmD+fPn4+GHH8bAgQORkpKCRYsWoXbt2jhx4oR5v5YtW6Jfv36Ii4vDrVu30K5dO+zcuRPnz58HYDmc44MPPsD27dvRtm1bvPzyy2jYsCFu376NI0eO4I8//sDt27fL/H9HRFQmrlpWgIjEsXHjRmH48OFC/fr1BT8/P0GlUgm1a9cWxowZIyQnJ5fY/8cffxQ6duwo+Pr6Cr6+vkL9+vWFUaNGCefOnbPY77PPPhOioqIEtVottGrVSti1a5fQpUsXiyWoBEEQLl26JPTs2VNQq9VCaGio8M477whbtmyxWIKq2NGjR4WnnnpKqFy5sqBWq4Xq1asLzz77rLB161bzPsVLUKWmplo8trTlrpYvXy40b95cUKvVQqVKlYQuXboIW7Zssdhn+/btQkxMjKDT6QSNRiPUqlVLGDp0qHDo0KEHvr63bt0SRo8eLURERAgqlUqoWrWqMGTIEIulmJKTk4Vhw4YJQUFBgkqlEho3biysWLHCankmk0mIjIwUAAjvv/++1X0MBoMwZ84coVGjRubn1bJlS2HGjBlCRkaGeT8AwqhRo6yW8eWXXwp16tQR1Gq1UL9+fWHFihXm1/Ze2dnZwqhRo4TAwEDBz89P6Nu3r3Du3DkBgPDBBx9Y7JucnCyMGjVKiIyMFJRKpRAWFib06NFDWLp06QNfRyIiW/GyqERUZsVXm/r3laSoYjl27BiaN2+Ob7/9FoMGDXJ1dYjIQ3FMKhGRB8vNzS2xLS4uDnK5HJ07d3ZBjYiIinBMKhGRB5s7dy4OHz6Mbt26wcvLCxs3bsTGjRvxyiuvlFjuiojImRhSiYg8WPv27bFlyxa89957yMrKQrVq1TB9+vQSS2MRETkbx6QSERERVTC7du3Chx9+iMOHD+PmzZv4+eef0bdv3/s+ZseOHYiNjcXp06cRGRmJyZMnY+jQoU6przUck0pERERUwWRnZ6Np06ZYtGhRmfZPSEhAnz590K1bNxw7dgzjxo3DSy+9hM2bNzu4pqVjSyoRERFRBSaTyR7YkjphwgSsX7/e4oIdAwYMQHp6OjZt2uSEWpbEMallYDKZcOPGDfj7+9t9mUIiIiJyLkEQkJmZifDwcIvLFjtLXl6exZX7yksQhBI5RK1WW1z+2F7x8fElLnscExODcePGlbtsezGklsGNGzc4y5WIiMhNXbt2DVWrVnXqMfPy8hDsHYUsJIlWpp+fX4lLS0+bNg3Tp08vd9lJSUkIDQ212BYaGgq9Xo/c3Fx4e3uX+xi2Ykgtg+LLGsZ0uQKll9bFtSEiIqKyKCjUY/POGiUuT+wMBoMBWUjCOPk1qFH+7JAPPeKyInHt2jVotf+UJ0YrqlQxpJZBcdO60kvLkEpERORmXDlUTw0t1DIRssPdGURardYipIolLCwMycnJFtuSk5Oh1Wpd0ooKMKTaxKARICg5z4yIiMgdFBS4/pxtUgAmETKySQBgKn85pYmOjsaGDRsstm3ZsgXR0dGOO+gDMKQSkcezNhnBHiZTIXKyLyI3JxH5+UnIz09Bfl6y+fcCw22oVEHQaKpA7R0BjaYKNJoIaLzDoVaHQqmsBIWXHydoElUgoobUgrLvn5WVhYsXL5pvJyQk4NixYwgMDES1atUwadIkXL9+HV9//TUAYMSIEfj000/x9ttvY/jw4di2bRt++OEHrF+/vvyVtxNDKpGHys9Pxa20HcjOPI/CwkwUGrNgLMhEoTEbhYWZMBZmQ6HwhpcyAEqlDkqlzvy7RlMVQcHdoVQFuPpplIs+4wTO/zUDKckboVIHw8enBrx9qsPHJwo+vjXg7RMFlaoSZDIl5HIlZDIlZHIvyGVKmIQCZGX+hcyMU8jUn4RefxJZmX/BZMovV51kMi8olQFQKitBqQqAUhkIb5/q8PWrDV/f2vDxrQUf35pQKDQivQpEVBEdOnQI3bp1M9+OjY0FAAwZMgQrV67EzZs3kZiYaL4/KioK69evxxtvvIEFCxagatWq+OKLLxATE+P0uhfjOqlloNfrodPp0KvPLSiVHJNK0iIIAgz5KcjNvQqjMQ8qVWWo1MFQKgMhl//zPbSwMAu30/5EWuo23ErdBr3+RLmOK5N5ITCoM0LDHkVo2GPw8a1RzmfiPFmZ53D+7Lu4ef0H0ctWKHzg41sTak0VqNUhUKvDoFaHQq0paik1GNKQl3cDebk3kJd3A/l5Rf8a8lNgMpV1qRoZNN5VofGOgJeXP7wUfvDy8oPCq+hfLy8tVOoQaLzDodEU/ShVldlCSx6noECP39dXRkZGhkPGcd5PcXYY55chypjUfEGPuCydS56Lq7AllchNGAy3kH7nEPQZx5CTnYDc3ETk5iQiN+cqTKY8q49RKitBpQ6GQuGNTP1pCEKhxf3+2ocQUKk1vLx08PLyvxtyfIt+V/jAaMxFYWEGCgoyUFCQjsKCot/1GSeQnXUWt+4G3jMnY+GvbYzQsMfgr20ElTq4KCyrgqBSB0EuVznjJXqgnOwruHDuffyd+A2KB3dViXgWteqMhyAUIifnCnKzrxT9m1P0b2FBBkxCIQRTAUxCAQRTwd3XUQ5fv9rw1zaGVvsQ/LUPwV/XGD4+UZDJbF+PURAEmIy5KCi4U/RjSIeh4DYM+WnIzbmC7OxLyM66gJzsSygs1CMv9xrycq+VuXy5XAW1JhxqdTAUCt+iHy9fKBQ+8Lr7r8lkgNGYjcLCbBiNOTAWZsNozIZM5lXUkutXD35+deHrVxc+vjUhlyttfp5EnkbU7n4Pw5Bqg3xfAUaVB/6VkNMIgqkoGBRkIifzIvS3Dt39OYy8rIT7PFIGtU845ApvFOTfRqHhNgCYA08xjW8NBFbpjkph3RAY1g0qTYjddc3RX0Da3+uR+vdvSE/djUz9SWTqT1rdV6HUQu0TDm3lVtAFtYMuqA18Ax6yaOktD2NhNgx5KTDkpaIgLw2FBXoUFmTCWKA3/27IS0Lqtf9BMBUN6gqK6IOazabDv1JTczkatCrT8Yo6oASrYbSos9/ezwlvAN5QIhxKAD6lHLsgPw05mRdhyE2GsTDL/DdTWJgFY0EWCgv0MOQmIz/3OvJzbqIgPxUmkwG5d8O3PW7f+tPitkzmBW+/KHipK0EuV0EmV0EuV0OuUJp/V3j5QK7whlyhMf+u8PJBpdAu8NXVt6seRLYoNPCc7c4YUolEIggmGPJSkJd9DXnZicjP+dv8e2GBHoJgBAQjhOIfkxGCUHg3YGTBeHcc6P34+NeBf+WW8PGvDY1fdWh8q8PbtxrUPlUhV/zTWmkyFaLQcKcotOXfQqEhHX4BjeDtX1O05+ujrYNqDcehWsNxKMi/hbTrm3D7xu/Iy7mOgvw0GPLTUJh/C4JghLFAj5wMPXIyziLp8rcAALnCpyi0BreBXOGDQkMGCgsyUGhIv/tvBoyF2eYxoDK5F2T3jAs1FmTCkJcKQ14KTMacMtc7MKwHajabAV1QG7ufe1G3uWu6zmUyGVSaYKg0wWV+jMmYj/zcJOTn3kBBXlrR31xhDozGbJgKs+/ezoVcroTc624Lq5cvFF4+UHj5wmTMQ47+AnL055GjP49s/XmYjDnIybwAZNr1LBBWcxBqNpkCb78oewogchsmedFPuctx4Mx+qWJIJbJTfs4NpKfGIyN1HzLS9iHr9rFyT5oxk8mh9g6HtnJLaCu3grZyK/hXblnmiUpyuZfNQaY8lOrKqFJzEKrUHGSxXRBMKDRkoCA/FTmZl6BPO4CMtP3ISDsAY4Ee6Sm7kJ6yS5Q6yBUaqDQhUKorw0sVAC+lPxRKLbyUWvPvuuBoVArpKMrx3IlcoYa3X3V4+1UXpTxBEJCfcx05mRdgLMiCyWSAYDLAZDLAZLz7uzEPRmMuTMZcGAuL/jUZc5GfexN3krYj6fK3SL6yGhG1X0KNxpOg9g4TpW5EUiMoAEGEkCp44JByhlQiKwRBQKEhHQX5aSjIv2VukTTkpyLrzglkpO5DXvbVkg+8Gy41vpHQ+ERC7VsVGt9qUKoCIJN5ATIFZPf+yL2KWqyUdye9KIvGhcoV3hVikotMJodSXQlKdSX4aOsiKOIRAEXhNTvjLPRp+6G/dRiAUBQmVQHwUurgpdLBSxUAhcLnbstzAUymAgimQgh3x4UqvPyh0oRApQmGUhMChZdvhXjN3IFMJoPGtyo0vvZdZlKfdgiXjk/F7Zt/4O/zi3Hj0kpE1h+Nag3egCAYYchLgiE35Z5/U2AszLobfPNgMuZBMBlgNOZBJlNAW7kFAoI7QhfS3u1XnCCif3B2fxkUz9CLHpwKL5VnzKjzJCZTAXLunEFm6kFkpR5GZuoh5KT/ZR67WCqZHL6BjaENaQttSDT8Q1pD7V+Dk0k8yK5l1ieEdX65rLP03UNpzxMo33NNv7EDVw5NRWbKfrvLsCSDb+BD0IZ1gC60I3wrN4HarxoUXq65Wg65XqFBj/ivg106u39kaAbUchFm95v0WJzM2f1EFYbJaEBeZgIK8m6hMP8WCvPv3P39Ngry0pB95wyybx2DyWh9drxC6Q+lpjK8NEFQ3v3x1taCf0g7+Ae3hpfK+deDJumoaGG0NI56ngHhXdH0sZ24nbgeVw5NQ86dUwBkUGqCofQOgco7BCqfMCi9Q6BQaiFXqCFXaCD30hT9q9DAWJAJfXI8MpJ2I09/Cdm3TyL79kncPLPEfBylJgQa/+pQ+1WD2q8avHV1EFzzWb5/ySlMCpHGpHpgRxFDKlUYxS2iWamHkZl2BFlpR5B9+ySEMqw9qVDp4B/UAn7BreAf1Ap+Qc2g8qkCuULthJoTeS6ZTIbK1R9FYLU+KMy/DS+VDjIbV30IqzcMAGDIuYmMpL3QJ+2GPjkeufqiMbMFeSkoyEtBZupB82MSj7yHqNazEFz7OQ4TqSCstfjr9SrovnZBZUgUDKk2yPcVUKjm6AipMBbkIOtmPDKv7YD+2i7kpB6DYCw5cUmu9IPSJwRemsrw0lSCwjvQ/LsmoBZ8Q1tBHVCrxHJCRdGW/99ETuMfCCMAu993fmHwD3kK/k2eQgSKxpYb824jPzMRBn0i8vWJMGQmIv3yeuRnXMa5ncNw/fznqNbtY/iGNBfveZBLtHmj5Oe/MV+kyazlIIjUksqJU0QSZirMQ3byIeiv7UDmtR3ISjoAwWjZSqpQ6eAb2gI+IS2K/g1tDrU2ii0lRB5IJpPBy7syvLwrW4TQqh3eR/LRT3DjwAfIurkPZ1a1R/BDwxHRfjqUPs5ZEYM8h1EhwCgvf4OHUeZ5jSYMqSRJgqkQubfOIDv5ELKTDiM7+TByb52CYLK8YpLSLwLayK7QRnaFX3h7qHU1GUiJ6L7kXmpUaf0WKjcYiGt/voPb51Yj9dSXuH3hR4Q2H4NKtZ+Ad+VGZfosMRkNAGSQKzhhkkhsDKkkGfmZ13DnwjqkX/ofspMPw1SYW2IfL59QaKt2hjayK/wjuzKUEpHdVH4RqPXIVwhp8goSd8QiJ/U4bux7Dzf2vQeVtjoConojIKo3/Kt2htxLDUEQYMhMRNbNA8i+uR9ZSQeQk3oMgBx+Ya3hF9EB/hEd4FelHRSclEV3mRRFP+Uux1j+MtwNl6Aqg+JlJB56IxkKtWcs++AshoyrSD/7MzLO/YycGwcs7pOrtfAJawHvKi3hE9YSPlVaQqmNZCglItEJJiPunP4e6Wd/RNbV7RAK/1nxQ67yg09YS+TdPofCrKQHFyZTwDu0KXzCWwOCCcb8DBjzMmDMT7/7bwZkMhkU3kHw8gmCl3dlKLwrF/3uEwyfsObwDm0GGVtnrTo2W1PmfYvP365cgmpI3XSoFOU/tsGox1fnA7gEFZEjCSYjbp/8FreOLUPuzcP33CODb2QH6Oo9Cf+oHlAH1rF6bXQiIrHJ5AoENh6EwMaDYDRkI+vqDugvboD+0gYUZiUhK3Fn0Y5yL3iHNIFPeBv4RrSFT3gbCKYCZF/bU/Tz9x4YMq4iN+kIcpOO3PeYBZk3Sr1PrvQpOkbVDvCN7ACf8DZQqHzFfMpuq9kk60sGWmPML/u+JD0MqeRUmVe24cbWichLPVm0QSaHb2RHBNR/Crq6j0PpV8W1FSQij6dQ+UJXpw90dfpAEEzITT6G3OTj0FSuB+/Q5pArS14cQFO5Hio3Gw4AMOj/Rvbfe5CbfAJyL28oNDoo1EU/crUOCo0OEEwozL0NY04aCnPTUJh7C8acWzBk/o2c6wdgzLuNrKs7kHV1R9EB5F7wDn4ImqAGUAc1gObuj0pXAzK5CH3J5DCidfeXvwi3w5BKTpF36xxubnsH+ksbAAAKdQBC2r+FSg8NgtI31MW1IyKyTiaTwyesBXzCWpT5MSptVaga9kelhv3tOqYgmJCfdhZZf+9B9rXdyL62BwWZ1++G5WOW9VOooa5cD5rghkUhNvghaIIbQekfwaFREiEoin7KXU75i3A7DKk2MKgFKDSe+Gdiv8LsNKTtmIk7h74ABCMg90Kl1q8gqMskePlUhgDA4JFvPSKi0sggj2wAbWQDaKNfgiAIKEhPRF7SMRhSzyI/9SzyU/+CIe08hMI85KWcQF7KCaTfU4JcUwma0EbwieqKoE5veez4ViPPL26NIdUGByd5Q6sV5xrQDWeUnLleURRmJiHr4u/IOr8J2Zf+gMmQBQDwq9cHIf+ZCXVQXRfXkIjIfchkMqgqVYeqUnWgwRPm7YLJiIL0q8hPOYP8lNPITz6NvORTMNy6AFPeHeRc3Y2cq7uRn3wSEU9/XWGC6plpZT8P6/UF0H3gwMqUAbv77ceQ6kAVOYjeSzCZkHfzCLLOb0LWhU3Iu2E5WUAd1gShvT6Ab82urqkgEVEFJJMroAqsCVVgTfjXf9S83VSQB0PaOeQk7kXK75OQ+df/cH3NC0VB1avkpUPdjS3nVmOe68/DDKn2Y0i1QZNPsiHX2PCXVsEnYhamX0fmwW+QdfBrFN5JtLhPVbUFfBrEwKfBw1BFNIdMLkeeR77FiIicTQUENIZP7cYICa+JlK8GIPPsL0j8+XmEPF8xgmpZmRQ877gzhlQbnBjrC622ZPKs+VG2C2rjGoKxADlnNiLzwFfIPbcFEIo+AGRqf3jX7Q6fBg/Du14veGk5GYqIyNV86v8HIUNXI2Vlf+Sc/g0p3w72uKDqaia5AJOi/GNjTR64rD1Dqg1sbkmtQEwFeUj/4wNkHvgKpqxU83ZNrU7wbzMUPo0ft7osCxERuZZPvZ6WQfWbFxDywjeSDqqXx4vTFanXG6GbIkpRdhNE6u73wIzKkEplc/t/45G5fyUAQOEXAr/WL8C/9QtQBtd2bcWIiOiBioLqD0VB9cx6pHzz/N2gqnZ11awSq4fSlOc5PZ0VEUOqDQxqAXIPXIIq9/gvRQFVJkPAoMXwafUsZAoll48iInIjXk27I/DV1bi1tD9yzmzA9UXdoHtyNtR1O7u6ag4jhS5yowIQ43oLRtc/FafjNSfpvox3ruPOqtEAAL8e4+DbdlCFWcaEiMjTaOp3R+VX10DmrUPB3yeQtrAPbi0dgIKUC66uWoVVPLtfjB9Pw5ZUKpVgMuL2N69AyLkDZWRzaPtMdnWViCqsv0f72fyYqp9mOaAmVNFp6nVF6JSjyNz4AbL3fIm8k+uRd3ozfDu9DP9HJkDhW9nVVSQCwJBK95G1dQEMF3ZBpvJBpaFfSnqQPZG7Y+AkZ1L4ByPg2Xnw7fwyMtZNRv7pzcjeuRg5B/4P2semwa/TS66uYoUh2jqpHtjdz5BqA4PaBLnaM9ZcK7hyBPrf3gMA+A6YAyGyFgxc55SIqGKpXhfa13+A4cx2ZK2dDOPfp5DxwxuQ1WwMZc3Wrq5duZlMrj9vCQoBgghLUAkSGF/rbByTSiUIeVnI/OIlwFQIVYsnoOnwgqurREREDqRq2A2VJu+C6qFeAADDXztcWyEisCXVJpeHaqHVaktsD1mmd0FtHCfrh4kwplyCvFIE/F9YAJlM5uoqERGRg8nkCqga94Lh1O8oOL8H6POWq6tUIZjkInX3u75R2OkYUm1Qc6Ue8gq8Xr1QWIC8+FXI2/0NIJPBf/hSyH0rubpaRFSKlJdLfmkuVtG+PJNzKOu0BwAUXD4AobAAMi/3Wc3F2vtBrwd0r7ugMvcQbUwqQyp5GlPWbRhO/wHD8Y0wnN4KITcDAOD98BtQ1evo4toR0f0wiJLYFOENIPOtBCH7DgoTj0NZs5Wrq1Rm1t4Pply+R9wZQ6oN8r1NkPm4/1cZIT8HBVuXo/DwBhjP7weEf56TTBsEr/bPQNF/IvK83P+5knvQDwpw6fG136W79PhEUqKoH43CwxuQe2U3jA+1cHV1ykWQwIRftqTajyHVw5iSLiF3wWCYrp0xb5NXawSvZjHwavEw5DVbQibnfDpyLoZEIulQ1GuPwsMbUHhuL1SPjrW4z9VfKG2l18uhe8W1dTAqBMhFmN1v9MA1qBhSPUjBwd+Qt/Q1IDcTMl0IVE+8WRRMg6q5umpERCQRivpF41KN5+IhmIyQ3XNNT3f7QinksLvfnTGkegDBWAjDmvdg+O0TAICibjtoxqyAvFKYi2tGRERSI6/eGND4Azl6mK6dgaJ6Y1dXyYItrblSaEkVROruF9jdT/djUJsgc7PF/IU7ySiIexnCmT0AAMWjr0ExaCoKvZSABMbqEBGR1Mghq98GwrGtyL+4G151G7m6QhY0a2+XeV8ptKRyTKr9GFJtkNo30Oo6qba8YZzJdHY/CuYPA+4kAxpfeL22EIroJ1xdLSIikjh5w2gYj22FcCYe6P2qq6tDHooh1QbB625D5lPo6mqUiXHLVyj88m3AWAhZRF14vfUV5BF1XV0tIiJyA/IG7WEEYPorHoIg8KIu5SDaYv7G8pfhbhhSKxihsACFK9+BafNyAIA8+gl4jfwEMm8/F9eMiIjchaxWM0CpAfRpEG5cgExCjRx5TweWeV+93gs6B9alLASFAEGE2f1ilOFuGFJtYPAWAG8JDwrJuAV88CJwsmj8KQa/A9Mz42CQyeDo8adCnyCr22Xr0xx6XCIicgBvJdCgFXBiNwou7AFq13Z1jcxsOq/kZDquIuRwDKkVxZUzwHuDgeSrgLcvMH4J0PZhpx2eYZSISJpKa0R4kOkHe2DGid0YeOcIvuvzpsi1cg69XuXyllTRJk6JUIa7YUitCOI3APNGAnk5QFgNYMo3QPX6rq4VERFJgN2NCKqmAIBVm7dj1W+pgJ3jUu0NyRUFQ6r9GFLdkSAACaeBg78DB34Hzh0u2t6kEzDxC0Bb9vE6REREVtVrCXgpgVs3geREIKy6XcXYE5I9PdhSEYZUG2TEVLa6BJX6jxSHH1vIz4VwfC9M+36Had8WIPW6xf3yvi9B8ep0yLj+KRERiUGtQUHdZhDOHITi7B4oqkc679AinVeFbNePSTUpBJhEmPQkRhnuhiHVBkHbUyHzzXPKsYSMWxBOH4Dp9EEIp/ZDuHACKDD8s4PaG7LmnSBv9x/I2/4HsqAqTqkXERF5DlmTdhDOHIRwMh6IGeDq6rgldvfbjyFVQoS/L8G45jOYTu4Drl0suUNQFcjb/gfy6F6QNe0AmcbH+ZUkIiKPIW8cDdP3C4vOSw6Q3zPEIeUW0+s1Lp84RfZjSLVBWrdgh3T3C4IA068rYVw6A8jP/eeOanUhf6gNZI3aQP5QW6BKdS6oTERETiNr1BqQy4EbVyCk3RS9187Rw+Wk0N1vlAMyuTjleBqGVBuE70mGzDenxHaVyv4yTbeSkf/BGzAe2A4AULTsDOXTL0HRqCVkun9PgBLu/hARETmByg/G2o1gOn8S8r/ioezR19U1QmbnsDLvK4WWVEEuzphUQe5553+GVBcq3Pkb8j56G9DfAVQaqEZMhvLJYZDJPfDrEhERSZKiaTRM50/CeEwaIdV/V1KZ95VCSyrZjyHVBYQsPfI/mYzCzWsAAPK6jaH570LIa9Rzcc2IiIgsKZq2Q8GapTCdcMy4VLFYa2HV631c3pJqUgAyTpyyC0OqEwn6Oyj45RsU/PglhNspgFwO5aAxUA2JhUxZjjEDREREDqJo3AYAYLpyHkJ6GmQB4q1hakvXvbtiSLUfQ6oTmG5cRcGaZSjYsArIK5oYJYuoAc07n0DxUGsX146IiKh0soDKkEfVgynhHIwnDsCrc2/Ryral694e7O53bwypNrjRIdTq7P7gA9et7A0UnDqC3O8+h2HHRsBUtMC+ok5DeA98Ber/PH639dToyCoTERGVW2GLdshLOAec2gtNrxhXV6fMTIVGZLu4DoJCgCDGxCku5k/3E3XoBuR+ZftWlvvTt8ieM9F8WxndFd6DRkDZqgOXkSIiIreibN4WeT9+hYJDu11dFbdjEmkJKpMHzql26VM2Go2YMmUKoqKi4O3tjVq1auG9996DIPzzbUEQBEydOhVVqlSBt7c3evbsiQsXLliUc/v2bQwaNAharRYBAQF48cUXkZWVZbHPiRMn0KlTJ2g0GkRGRmLu3LkOfW7Fb2Rluy4IWPUHdHHfQtW6IwMqERG5HWWbToBcDuOlczDe/NvV1bEqtU1EiZ+EVuGurhaVg0tbUufMmYPFixfjq6++QqNGjXDo0CEMGzYMOp0OY8eOBQDMnTsXn3zyCb766itERUVhypQpiImJwZkzZ6DRaAAAgwYNws2bN7FlyxYUFBRg2LBheOWVV7Bq1SoAgF6vR69evdCzZ08sWbIEJ0+exPDhwxEQEIBXXnnFIc/NlFT0JtY8+Ty8atV3yDGIiIicQa6rBK8mrVF4bD8Mu/+A9zNDXV2lEqwNvTNluX5MKidO2c+lIXXv3r144okn0KdPHwBAjRo18H//9384cOAAgKJW1Li4OEyePBlPPPEEAODrr79GaGgo1q1bhwEDBuCvv/7Cpk2bcPDgQbRq1QoAsHDhQvTu3RsfffQRwsPD8d1338FgMGD58uVQqVRo1KgRjh07hvnz59sUUhNahVsdk2pNlVtJSAKwo2cLtGgRYcOrIl2ljb0lIqKKT9WxR1FI3ePakJrapuznVL1e7/IlqIxyARBhPKmRi/k7V/v27bF06VKcP38edevWxfHjx7F7927Mnz8fAJCQkICkpCT07NnT/BidToe2bdsiPj4eAwYMQHx8PAICAswBFQB69uwJuVyO/fv348knn0R8fDw6d+4M1T2XhoqJicGcOXNw584dVKpUyaJe+fn5yM/PN9/W6/UAgHon/obcz/+Bz0vIz0NSUtGMxT56L8iPXbPj1ZGe8lxZi4iI3JusWw/kfDoLBYf2wqswE3IfX5fUI8KGc6oUWlLJfi4NqRMnToRer0f9+vWhUChgNBoxc+ZMDBo0CADMQS80NNTicaGhoeb7kpKSEBISYnG/l5cXAgMDLfaJiooqUUbxff8OqbNnz8aMGTNK1Pdck6plakm9cOEC6gKQabwh0wU8cH8iIiKp84qqDUXVajD+nYj8/Xvg3a2Xxf3Xm0W6qGalk0JLKrv77efSkPrDDz/gu+++w6pVq8xd8OPGjUN4eDiGDBnisnpNmjQJsbGx5tt6vR6RkZFlbknN33cQAKCoEsGJUkREVCHIZDJoOvVA9v+tQP6ff5QIqba0cDqLFFpSTXIBMhG66k3s7neut956CxMnTsSAAQMAAI0bN8bVq1cxe/ZsDBkyBGFhRVeiSE5ORpUqVcyPS05ORrNmzQAAYWFhSElJsSi3sLAQt2/fNj8+LCwMycnJFvsU3y7e515qtRpqtdru52VMugEAUFSpancZRERUNqW14EkxNLk7deeikJr35zYIJhNkcumsi2Tt70AKLalkP5eG1JycHMj/9QeuUChgurvwfVRUFMLCwrB161ZzKNXr9di/fz9GjhwJAIiOjkZ6ejoOHz6Mli1bAgC2bdsGk8mEtm3bmvf573//i4KCAiiVSgDAli1bUK9evRJd/fdT1u7+aT9n4l0AQxvXwxIbuz/4oUpEnsyewMnPTedRt2gLmY8vTGkpKPjrJFSNmrq6SpInKMTpqhfY3e9cjz32GGbOnIlq1aqhUaNGOHr0KObPn4/hw4cDKOpaGDduHN5//33UqVPHvARVeHg4+vbtCwBo0KABHn74Ybz88stYsmQJCgoKMHr0aAwYMADh4UXrow0cOBAzZszAiy++iAkTJuDUqVNYsGABPv74Y5vqW9bu/jtHzwAAVil1+JUfnkREZcbAKW0ylRrqdp2Rt20j8v7cKqmQau1vRxLd/QpxZvebeMUp51q4cCGmTJmC1157DSkpKQgPD8err76KqVOnmvd5++23kZ2djVdeeQXp6eno2LEjNm3aZF4jFQC+++47jB49Gj169IBcLke/fv3wySefmO/X6XT4/fffMWrUKLRs2RJBQUGYOnWqw9ZINd4sWqpJUaViLD1FRERUTNO5B/K2bUT+rq3AiNgHP8AOYk3CYne/e5MJ917eiazS6/XQ6XSotu9kmVpS/364Ewr/voawr9dA06K1E2pIRETkHMa0VFzr1gYQBFTdth9eIaEPflApEhpVF7FmJRWfvzMyMsq8zrnYx6426wbkmvIf25SnR+I74S55Lq7i0pbUikgwGlF4d+krL7akEhFRBaMICoaqcVMYThxD7q7t8H96gN1lRZ2+KmLNSvL07v5Fixbhww8/RFJSEpo2bYqFCxeiTZs2pe4fFxeHxYsXIzExEUFBQXj66acxe/Zsi95rZ2JIFZkxLRUoLAAUCijK8e2SiIhIqny69IDhxDHk7NparpDqlJZUhx5BulavXo3Y2FgsWbIEbdu2RVxcHGJiYnDu3LkS68sDwKpVqzBx4kQsX74c7du3x/nz5zF06FDIZDLzRZacjSFVZIU37o5HDQ2DTOGBU/GIiKjC8+7SHekL5yEvfjdM+XmQq+1rafOIllQZABFW6jLZuOz6/Pnz8fLLL2PYsGEAgCVLlmD9+vVYvnw5Jk6cWGL/vXv3okOHDhg4cCCAokvVP/fcc9i/f3+5624vhlSRFd78GwDgFc6ufiIiqphU9RpCERoGY3IS8g7Ew6dTN1dXyWqrrBRaUk0KACJecar4Uu3FrK3tbjAYcPjwYUyaNMm8TS6Xo2fPnoiPj7dafvv27fHtt9/iwIEDaNOmDS5fvowNGzbghRdeKH/l7cSQKrLillSvCriQ//26ZRz9bZiIiKRDJpPBu3N3ZK1Zhdyd2yQRUq2dh6TQkiq2yEjLlQ+mTZuG6dOnW2xLS0uD0Wi0eln5s2fPWi134MCBSEtLQ8eOHSEIAgoLCzFixAi88847otbfFgypNlCrjFCojfffKaUopGoiq0DzoH3dTIOLl0u9T2P/BbqIiMgNBfTsVhRSd22FWjXNaZcB/6t2zTLvK4WWVKNcgCDiZVGvXbtmMbu/PFfIvNeOHTswa9YsfPbZZ2jbti0uXryI119/He+99x6mTJkiyjFsxZAqsoLrRSFVefdCAkRERBWRT/v2kGk0KLxxA/nnz0NTr55Tjltag4kt4dWZxO7u12q1D1yCKigoCAqFwuol4a1dDh4ApkyZghdeeAEvvfQSgKJL1RevU//f//63xBVCnYEh1QaHakU98A/jobRUnAbwVetWeN051SIiInI6uUYDn+j2yN6+DdnbtzktpJbGWng1Zla87v6yUKlUaNmyJbZu3Wq+QqfJZMLWrVsxevRoq48p7VL1AOCqJfUZUm3Q6lICFP6lL+YvCAIuXLkCABgBOdgDTkREFZlft27I3r4NWdu3ofKIkaKVK1arqBS6+01yARCxu7+sYmNjMWTIELRq1Qpt2rRBXFwcsrOzzbP9Bw8ejIiICMyePRtA0aXq58+fj+bNm5u7+6dMmYLHHnvMHFadjSHVBg9qSb19+zYqZ2cDAE536oAW1286q2pERERO59e1G5IB5B49isLbt+EVGChKufebA2ELKbSkCop/uurLW44t+vfvj9TUVEydOhVJSUlo1qwZNm3aZJ5MlZiYaNFyOnnyZMhkMkyePBnXr19HcHAwHnvsMcycObP8lbcTL4taBsWXNmt04sh9W1Jzz5zBhT5PwKtyZTQ8tM+JNSQiInKN870fQ95fZxEZNw+VnnjcZfU4XqN2iW1SuCxqwOJrkHmX/9hCrh7pIyN5WVSyj+HvGwAAZQQnTRERkWfw69ABeX+dRXb8fqeEVGthVMoEkbr7xVghwN0wpIqoeGa/ijP7iYjIQ/hFt0XaF18ia59zehCbXrlY5n2l0N1vkguQKRhS7eH89QQqMMP14pZUXm2KiIg8g2/rVoBCAcPVRBhucC4GiYctqSIyt6Syu5+IiDyEwt8f3g81Qu7xE8iO3wdVvyct7ndl97w0ZvcDMhGaBAUPbFZkSBVR8TdIjkklIiJP4hfdDrnHTyBr3z5U+ldItaV7vpi7jTu9H6NcgIxjUu3CkGoDldIEhbL0S50W3ChqSfWtHgbVffaz18EI6wslt75+TvRjERERlVVAx9ZIXbIU2fv2iXL+s+e8Vto5ktwXQ6pITLl5KEy7BcBx3f0Mo0REJEV+rVtA5uUFw983kJ/4N9TVqjq9DtbOkcbMLKfX499MCkDmgnVSKwKGVBvsCK9T6tpk586dQ30Afn5+ONKoDWQyGUMlERF5BIWvL3yaNUb2oaPI3LvfJSFVqkzs7rcbQ6oNut64AEWmn9X7Mg7vBgAURlRBmxvnnVktIiIil9O2b4vsQ0eh37sfQQP6lasssbrupTBxiuzHkCoSw91LoKrCq7i4JkRERM7n374tbn6yBJl790MQBMhkMrvLEqsnUhLd/ZzdbzeGVJEUr5GqrsqZ/URE5Hn8WjaHTKVEQVIy8hOuQlOzhlOPb631VQotqUVjUkXo7ueYVLqf+41JHXw7C98AiG3YFBMlNMOwU8oZV1eBiBzkz5CGNj/Gkz4T+Po4mVIJ/5ZNoY8/hLz98QioF+nUw1v7vyuUQEsq2Y8h1QYxqWfhlWd9TOqJi38BAFYGKLCeH3JEHu1+4UjMEMRAdX98fZzrz5CGmN6rD2bEH0Krw+fwf+Nt/5IgNr3G9S2pkAviTHrixCm6n83B9a22pHZKOYP8v4u7+zkmlcjTMRyRJ+qUcgYZzaIAAD9u3YKOyafLNS5VDFJoSZXJRBqTKgM8LaYypNqgtJZUwWhE/o1kAByTSkREnsu/RRPI1CoUpN5C7oXL8Klby2nHttaDIYmWVLIbQ6oIDEkpgNEImZcXVKHBrq4OERGRS8g1amhbNUPGngPI2HPAqSFVqmNS5SKukyr+tSzFk52dDV9fX1HLZEgVQd7drn5VeBhkCg+cfkdERHSXrmMbZOw5gPQ9B1Bl2HP33deeyW22kEJLqlzEJaikHFJDQ0Px7LPPYvjw4ejYsaMoZTKkiiD/WtEaqRqORyUiIg+n69AGAJCx9yAEkwkyeekJrbTx244OryS+b7/9FitXrkT37t1Ro0YNDB8+HIMHD0Z4uP3DIBlSRcBJU0REREX8mzeG3NsbhbfuIOfsRfg2rGtzGfZMPpRqsFUoBJHWSRVQIEJ9HKVv377o27cvUlNT8c0332DlypWYMmUKYmJiMHz4cDz++OPw8rItdjKk2kClMMLLq2Rje8HNopDqU60KVFbuJyIi8hheCujaNsOdHfHIit+HSk2cMy61x+2TJbYV6ivWmFR3EBwcjNjYWMTGxmLhwoV46623sGHDBgQFBWHEiBGYOHEifHx8ylQWQ6oNfg1sZHUJqkeSMnEDwOT6rfFiYGPzdmtvGCIiooquUsfWuLMjHnd2H0Tkq4NcXR1youTkZHz11VdYuXIlrl69iqeffhovvvgi/v77b8yZMwf79u3D77//XqayGFJFcPXqVQBA9erVLbZvvSewuhOGayIiKo9KHVsDANL3HnrguNSKTsyJU1L2008/YcWKFdi8eTMaNmyI1157Dc8//zwCAgLM+7Rv3x4NGjQoc5kMqTZ47PZpeBVarpMqCALOXU0AAEzR5mI2Ax4REXk4/2YNofD1QWG6HlmnzsG/SdmDSUXjKd39w4YNw3PPPYc9e/agdevWVvcJDw/Hf//73zKXyZBaTgW302HKyQPAiVNEREQAIFcqERDdArf+2I07uw86JaRa673Ue7l+CSpPUFhYiNmzZ6Nfv34IDQ0tdT9vb29MmzatzOUypJZT/t9Fy0+pQipDoVG7uDZERETSENCx9d2QegDVXhts02PddbicNTKRWlIh4ZZULy8vjB8/Hn369BG3XFFLq+CsTZz6Of0ingLXSCUiIrpXpQ5FXb4Z+47aPC5VrLkRUpjd7ynatGmDo0ePlpifUx4MqTZ4Wn8CSliOSU04txdA0fJTGi4/RUREBABQNa8NhY8GhRmZKLx4Af4Nazv0eOu1zUpsk0J3v6dMnHrttdfw5ptv4u+//0bLli1LXCK1SZMmNpfJkFpOuXevNuVdNczFNSEiIpIOuVKJgFZNcGvXAdzZd0y0kGotjEqZTCZALkJXvUkm3e5+ABgwYAAAYOzYseZtMpkMgiBAJpPBaLS9IY8h1QZrtU1KdPc/dTMHVwC8Ubc1xkjwjdNHf8zVVSAiIg9VqV1T3Np1ALf3HUO14U+LUqYt57UCdvc7TUJCguhlMqTawFp3/+6EswCAr4KN2MRASEREZFapXXMAwJ19x1xbERdSyATIRWgFlUm8JVXMsajFGFLLKa+4uz+SE6eIiIjuFdC6MSCXI/fqdeTdTIGmSojDjmV1TCqkMSZVlGsZSHxMKgB88803WLJkCRISEhAfH4/q1asjLi4OUVFReOKJJ2wujyHVBv/u7s/OzobfrXQAwC8Ne6GStpJDj8+ue89iz7gr/o0QSYu7jZ8UnRZo3qQJjh07hhEnMvBMvV6urhE5yOLFizF16lSMGzcOM2fONI9BDQgIQFxcHEOqow3MPgql4p/u/syzReMvvPx9MUx5CbJsmUOPr1I4tHiSmCezD9v8GP6NEEmLPe/jiqZDhw44duwYdu/ejWeeecbV1XE6uVyciVNSXicVABYuXIhly5ahb9+++OCDD8zbW7VqhfHjx9tVJkNqOeQk3gAA+FQPh0zm2IBKRETkjva3CgcAfP3nFiT+K7T/7NvSFVVyKk8JqQkJCWjevHmJ7Wq1GtnZ2XaVyZBaDjlXi8aj+lTneFSiYu540mFrF1HZ2PP+vtYjBNXwX2SeOI9vhHrw8/N78IPI7URFReHYsWMlJlBt2rQJDRrYd1lchlQbrPJtDq3vP2NS376xGscBPFurGRZYeePyxEeeiH/3RBWXXe/vQMA7Mgy515Lw8I5vENytjfgVg3S/IHtKS2psbCxGjRqFvLw8CIKAAwcO4P/+7/8we/ZsfPHFF3aVyZBqg3+PST1w8SgAYFuEF0/MREREpajcrin+vpaEW/HHyh1SpRpGS+Mps/tfeukleHt7Y/LkycjJycHAgQMRHh6OBQsWmBf6txVDajmYx6RWC3dxTYiomD0nMH7JrJjcLcxUZIu6PIbRazYj8mAC/18qsEGDBmHQoEHIyclBVlYWQkLKt+QYQ2o5cEwqkfQwcFIx/i1IR0bLQADA9vg9eCJjP+Re9scPdwu5MpkgykL8Ul/M/14+Pj7w8fEpdzkMqTa4d0xqVlYW/NPuAAB+btAbAb4BLqxZ6frnHnB1FYiIyMNVfqgGlFpfFOizkXvmPCo1q2d3WaWd11Z7O2asa3l5ypjUqKio+650dPnyZZvLZEi1wdDcQ1Aqi8akZpwrerGVOj+8qj4P5LqyZkRERNIlVyhQuU1jJP2xD2nxJ8oVUkmaxo0bZ3G7oKAAR48exaZNm/DWW2/ZVSZDqp2yrxaNR/WtzvGoRORYYrYQsXeFXKVydJO7IfUY6oz0nEX9ZSK1pAoSb0l9/fXXrW5ftGgRDh06ZFeZDKl2yr47HtWX41GJyMEYLKkiCG7fFACQtvc4BEHwmIvgKAAoPOOpWvXII49g0qRJWLFihc2PZUi1wUrvVtB6F41JfevGGhwF8Eyt5vhYouNgKiKerImIHM8R4zuzOzWCTjEWuTdS8WFqWIlF36liWrt2LQIDA+16LEOqDe4dk7r3YtGs0R0RMgYnIiKqUBxyXpMDumb1cPvwGfTf/jWq948R/xj/UpCb5fBjPIhYE6ek3t3fvHlzi9ZxQRCQlJSE1NRUfPbZZ3aVyZBqA7XCCJWiEACQe3eN1EpRodDc3UZE0vaVqr2rq4Ahhr2urgKRy4S2fwi3D5/BnfijqDewh6hlW3t/6wv0+FnUo9hOLhMgF2H5KEHiS1D17dvX4rZcLkdwcDC6du2K+vXr21UmQ6oNPle1hVZV1N0fdDUNABBX5xE0UTVxZbXoLp786UH4N0LkWiEdmuCvhT8gNf6k6GVbe38bDNmiH4esmzZtmuhlMqTaITMzE7du3QIAVK9enSc+IiKiMgiJLmrUuXPqEgzpmVAF+Lu4Ro7nKd39er2+zPtqtdoy7ceQaoerV68CACpVqgSdToevIF4XIgMvERFJVbmHzFQDateqhUuXLmHIEQEPP+zYITh6lR7fO/QIDyaXQaTufhEq40ABAQEPXLGheFUHo9FYpjIZUm3wqmE/VAZfXDu/GwAgqxHCUEnkQFIYQ2oPfi5QRSXG37YQXQe4dAlv7/weDz/8sAi1IilYsWIFJk6ciKFDhyI6OhoAEB8fj6+++gqzZ89GjRo1bC6TIdUOWXfXSPWrHubimhBVbAx7RBVPSPumuPztJqTEn3D4e1wKY1Jl8qIfMcqRsq+//hrz58/Hc889Z972+OOPo3Hjxli6dCl27Nhhc5kMqTZQyY1QyY3mmf3aGqFQycvWZE1EpVvm1cnVVbDLy4V/uroK5ETu+ncqNWe6BKAR5kB/4Cy+kLWGUql02LGk0d3vGbP74+PjsWTJkhLbW7VqhZdeesmuMhlS7ZB1NQkA4M+rTRGJgmGP3AH/TsUh1DZBHahF7m09nj6wHCFtG5bYh18I3E9kZCSWLVuGuXPnWmz/4osvEBkZaVeZDKl2yLxSFFL9arC7n4iIKh5Hh8S0Tt3wv//9D623p2Jyh4odSOVyAQoPmN3/8ccfo1+/fti4cSPatm0LADhw4AAuXLiAH3/80a4yGVLtkHWlaEyqfw22pBIRUcXj6FbjWw/XBf4HfPLr/+HqxC4l7q9ILalidfeLUYYj9e7dGxcuXMDixYvx119/AQAee+wxjBgxgi2pzmLIyEL+nUwAnDhFRERkj8jeRbO/Uw/+hZzk2/AJte/a7iQtVatWxcyZM0UrjyHVRplXkwEA6so6qPx9XFwbIiIi9+MbHoSgFvWQduQc/t64D3WH9ra4X6yWXEOh62f3e0pLqiMwpNpgoVd77Ph7B34G8FCN2g/sjuAgeyIiIusi+0Qj7cg5JG7YWyKkViRiXXFKjDLcjctD6vXr1zFhwgRs3LgROTk5qF27NlasWIFWrVoBKLo6wbRp07Bs2TKkp6ejQ4cOWLx4MerUqWMu4/bt2xgzZgx+/fVXyOVy9OvXDwsWLICfn595nxMnTmDUqFE4ePAggoODMWbMGLz99ts21/fKlSsAgKioKPO2UcYdVvdVSfzqEERERK5Sq087HH1vJa5vOQiFIRcKtapMj1uk6FrmY+i99PjazvqR67k0pN65cwcdOnRAt27dsHHjRgQHB+PChQuoVKmSeZ+5c+fik08+wVdffYWoqChMmTIFMTExOHPmDDQaDQBg0KBBuHnzJrZs2YKCggIMGzYMr7zyClatWgWg6HqyvXr1Qs+ePbFkyRKcPHkSw4cPR0BAAF555ZUy1/dN4584cKmodfRiNUWp4ZSIiIjuL7hFHfhUqYycm7dwfedxVOvVukyPK+3ca0t4daaiy6KKU46ncWlInTNnDiIjI7FixQrztntbKAVBQFxcHCZPnownnngCQNEVDUJDQ7Fu3ToMGDAAf/31FzZt2oSDBw+aW18XLlyI3r1746OPPkJ4eDi+++47GAwGLF++HCqVCo0aNcKxY8cwf/58m0IqAGQWr5FaI7S8T5+IiMhjyeRyVO/dDn99uR5XN8SXOaS6G08bk5qamopz584BAOrVq4fg4GC7y3JpSP3ll18QExODZ555Bjt37kRERARee+01vPzyywCAhIQEJCUloWfPnubH6HQ6tG3bFvHx8RgwYADi4+MREBBgDqgA0LNnT8jlcuzfvx9PPvkk4uPj0blzZ6hU/3QlxMTEYM6cObhz545Fyy0A5OfnIz8/33xbr9cDAOYpOqHL1ckAgAk1e6HP3W9tbFElIiKy7n4tnL88rscTX65H5m9H8eknXSCTeWBzYQWRnZ2NMWPG4JtvvoHRWHQ1ToVCgcGDB2PhwoXw8bF9srlLQ+rly5exePFixMbG4p133sHBgwcxduxYqFQqDBkyBElJRa2WoaGWrZahoaHm+5KSkhASEmJxv5eXFwIDAy32ubeF9t4yk5KSSoTU2bNnY8aMGSXq+6bxT/x15SIA4NvIFGxgOCUiIrqv+zXkFHRVQqFW4sqVKxh4ciUCG0WVuq89DEbXz+6XQYBMhFZQGaTdkhobG4udO3fil19+QYcOHQAAu3fvxtixY/Hmm29i8eLFNpfp0pBqMpnQqlUrzJo1CwDQvHlznDp1CkuWLMGQIUNcVq9JkyYhNjbWfFuv1yMyMhL5GdnIT88CAPjzalNERKKT6rhCchAt8Hf3nti4cSOabkjGxCbDRC1er9DjC1FLtJ2ndPf/+OOPWLt2Lbp27Wre1rt3b3h7e+PZZ591v5BapUoVNGxoec3eBg0amC+fFRZWFASTk5NRpco/V3dKTk5Gs2bNzPukpKRYlFFYWIjbt2+bHx8WFobk5GSLfYpvF+9zL7VaDbVaXWJ7/rXrAADv4AD4+ysBFJb1qRIRURm8Kfzh6iqQkxkerQNs3IiFv32L1AmtHvwAG+QLrm9J9RQ5OTkler4BICQkBDk5OXaVKS9vpcqjQ4cO5sG1xc6fP4/q1asDKJpEFRYWhq1bt5rv1+v12L9/P6Kji65WER0djfT0dBw+fNi8z7Zt22AymczXjo2OjsauXbtQUFBg3mfLli2oV69eia7++8lMLArDWk6aIiIiEkVUn6Jz9c34v5CblmF3OfNkPUv8zJJ1E6uadituSRXjR8qio6Mxbdo05OXlmbfl5uZixowZ5sxmK5eG1DfeeAP79u3DrFmzcPHiRaxatQpLly7FqFGjAAAymQzjxo3D+++/j19++QUnT57E4MGDER4ejr59+wIoanl9+OGH8fLLL+PAgQPYs2cPRo8ejQEDBiA8PBwAMHDgQKhUKrz44os4ffo0Vq9ejQULFlh06ZdF52u6on9rNLF4ExAREZF9tNVCENy0JgSTCQkbD9hdzpvCHyV+3hG2i1hT+8jlAhQi/NizmP+iRYtQo0YNaDQatG3bFgcO3P/1TU9Px6hRo1ClShWo1WrUrVsXGzZsKNOx4uLisGfPHlStWhU9evRAjx49EBkZib1792LBggU21x1wcXd/69at8fPPP2PSpEl49913ERUVhbi4OAwaNMi8z9tvv43s7Gy88sorSE9PR8eOHbFp0ybzGqkA8N1332H06NHo0aOHeTH/Tz75xHy/TqfD77//jlGjRqFly5YICgrC1KlTbV5+6v+u7AEAJNSQsUuKiIhIJDX7tEPq8cu4vH4/Gr7wH1dXp0JYvXo1YmNjsWTJErRt2xZxcXGIiYnBuXPnSkw4BwCDwYD//Oc/CAkJwdq1axEREYGrV68iICCgTMdr3LgxLly4gO+++w5nz54FADz33HMYNGgQvL297XoOMkEQpN1+LAF6vR46nQ69e/fGhg0b8Nlnn2HkyJHm+xlYiYiI7Hdj3xl83/51qLQ+GJmyFgqVUpRy8/XZWBTQFxkZGdBqtaKUWVbF2aHX339CqfV78AMeoECfhd+rdirzc2nbti1at26NTz/9FEDRZPXIyEiMGTMGEydOLLH/kiVL8OGHH+Ls2bNQKm1//Xft2oX27dvDy8uy/bOwsBB79+5F586dbS7T5ZdFdSf7rp4BAGypfgcXGUyJiIhEUaVNfXgHByA3NR3Xd59Cte7NbS7D2vA7vUyPRWJUsBzEnt1fvHZ7MWuTvQ0GAw4fPoxJkyb983i5HD179kR8fLzV8n/55RdER0dj1KhR+N///ofg4GAMHDgQEyZMgEKheGD9unXrhps3b5Zopc3IyEC3bt3Ma6fagiHVBpmJRSsCcOIUERGReGRyOWr2aYPTK3/H5d/22xVSrfVqVsTZ/ZGRkRa3p02bhunTp1tsS0tLg9FotLrOfHFX/L9dvnwZ27Ztw6BBg7BhwwZcvHgRr732GgoKCjBt2rQH1ksQBKsXY7h16xZ8fX0f+HhrGFJtUJCZCwAIqhEMJWz/RkBEtpkti3F1FewySdjs6ioQOYQj35MdHtOj38rfof/tOD6a30OUq09JoiUVAuQiLMRfXMa1a9csuvutLZlpD5PJhJCQECxduhQKhQItW7bE9evX8eGHH943pD711FMAiia7Dx061KI+RqMRJ06cQPv27e2qE0OqjUJDQ/GRz+OuroZL8MRLzsa/OSJpceR7Mr+nDAqVEhcvXsSr575E5XqRD37Qg8qUQEuq2N39Wq32gWNSg4KCoFAorK4Rb219eKBo7XqlUmnRtd+gQQMkJSXBYDBYXFr+Xjpd0cpHgiDA39/fYpKUSqVCu3btzJe7txVDqo1q1Kjh6iq4jLu2akkBwxYR0f2p/X1QrWtjJPx+BBd/3S9KSPVUKpUKLVu2xNatW81LdppMJmzduhWjR4+2+pgOHTpg1apVMJlMkMuLVig9f/48qlSpUmpABYAVK1YAKMpH48ePt7tr3xq7QuqRI0egVCrRuHFjAMD//vc/rFixAg0bNsT06dPv+2TcnbWQygBCRERUfrX6tC0Kqev3o+34p11dHVHIZAJkIrSk2lpGbGwshgwZglatWqFNmzaIi4tDdnY2hg0ruvTs4MGDERERgdmzZwMARo4ciU8//RSvv/46xowZgwsXLmDWrFkYO3ZsmY5XlnGrtrIrpL766quYOHEiGjdujMuXL2PAgAF48sknsWbNGuTk5CAuLk7kakqHtZBaWgsjwysREVHZ1erdGn+8vhjX9/4FQ3YeVL6aBz/oLmvnYr1Mj4/FrKAd5LKiHzHKsUX//v2RmpqKqVOnIikpCc2aNcOmTZvMk6kSExPNLaZA0YSszZs344033kCTJk0QERGB119/HRMmTCh/5e1k1zqpOp0OR44cQa1atTBnzhxs27YNmzdvxp49ezBgwABcu3bNEXV1meK1zgAgZvEYNH+1j4trREREVPEIgoDFUUOgT0xB/00zEdWrZbnKy9dn4+OAfi5dJ/WJpO2irZP6v7BuLnkurmJXS6ogCDCZTACAP/74A48++iiAohSelpYmXu0kSMflp4iIiBxCJpOhevemOLlyC65uO25TSJVqS6pCJkAhQne/SYQy3I1dIbVVq1Z4//330bNnT+zcuROLFy8GACQkJJRYk6uiCalRGRoUuLoaREREbmGa7FGb9m/YPQWDV26BcXtChZiwK/bsfqm6fPkyatasKWqZdoXUuLg4DBo0COvWrcN///tf1K5dGwCwdu1au9fCchcf1hgKjaxsY2RmCL85uDZERETSZuu5MKNr0Trkhw8fRkZGhnm4HUlb7dq10aVLF7z44ot4+umnodGUfTxxaewak1qavLw8KBQKu675KmXF40p8QyvhrZtfu7o6REREFmxtrZS6unXr4sKFC/jll1/w2GOP2V1O8fnblWNSn03ZCqW2/MsyFeiz8UNID8mOST127BhWrFiB//u//4PBYED//v3x4osvok2bNnaXafc6qenp6Vi7di0uXbqEt956C4GBgThz5gxCQ0MRERFhd4WkTFctyNVVICIiKqGi9dxpu9UCLlzArK1f4MijZZvWLtWgLhOpu1+MZawcqVmzZliwYAHmzZuHX375BStXrkTHjh1Rt25dDB8+HC+88AKCg4NtKtOukHrixAn06NEDAQEBuHLlCl5++WUEBgbip59+QmJiIr7+umK2Nuqq2/biEhERke2iujfB4aWbkLD9RJkfYy2o5wk5YlaLysDLywtPPfUU+vTpg88++wyTJk3C+PHj8c477+DZZ5/FnDlzUKVKlbKVZU8FYmNjMWzYMMydOxf+/v7m7b1798bAgQPtKdIt6CJDXF0FIiKiCm9RtzexFnORfOIKRt1qh6Ag+3oy9TI9PhC5brbylIlTxQ4dOoTly5fj+++/h6+vL8aPH48XX3wRf//9N2bMmIEnnngCBw4cKFNZdoXUgwcP4vPPPy+xPSIiAklJSfYU6RZ01diSSkRE5GiLgw8g5KHqSDl1Fa9tn4dGT3ewqxwptKTKIUAOEUKqCGU40vz587FixQqcO3cOvXv3xtdff43evXubLxgQFRWFlStX2nR5ebtCqlqthl6vL7H9/PnzNo83cCdNnmgFFYyurgYREVGFV6tbY6ScuorEbcfQ/Ol2D9x/kuyJEtuk0JLqKRYvXozhw4dj6NChpXbnh4SE4MsvvyxzmXaF1McffxzvvvsufvjhBwBFi+8mJiZiwoQJ6Nevnz1FugXvQP8H70RERPQA1gIVWWrQXcCTC39Dxo4rbv16yWSCKJOepD5xasuWLahWrZrFpVaBogtAXbt2DdWqVYNKpcKQIUPKXKZdIXXevHl4+umnERISgtzcXHTp0gVJSUmIjo7GzJkz7SnSLbwp6wOtrOzLPswW/ufA2hARkbvi+eHBcjtnQyaT4ezZs5h0fQW04YH33V+qQdZTuvtr1aqFmzdvIiTEcv7O7du3ERUVBaPR9p5ou0KqTqfDli1bsGfPHhw/fhxZWVlo0aIFevbsaU9xbmOesB4awcfV1SAiIqrwvCv5IbxFTVw/fAmXt59Es0Fd7ru/teAvhTGpnqK0ZfezsrLsXtjf7nVSAaBDhw7o0MG+wczuiC2pREREzlOzW2NcP3wJl7adeGBIlaqKPrs/NjYWQNHQz6lTp8LH55/GPKPRiP3796NZs2Z2lW1XSB07dixq166NsWPHWmz/9NNPcfHiRcTFxdlVGaljSyoREZF1juhub9ZdhT8/WofbOy7bVb5epse7otfKNgoIUIjQVS9GGY5w9OhRAEUtqSdPnoRKpTLfp1Kp0LRpU4wfP96usu0KqT/++CN++eWXEtvbt2+PDz74oMKGVCIiIrLOnt7DBwXPjh07wsvLCwkJCUhISEBUVJS91SMH2b59OwBg2LBhWLBggaiXbLUrpN66dQs6na7Edq1Wi7S0tHJXSqpUKIQKha6uBhERScibMttXtZkn/OiAmrifB74OfkDVNrVwZe85TNz2IdoM72FT+VIYk1rRu/uLrVixQvQy7QqptWvXxqZNmzB69GiL7Rs3bkTNmjVFqRgREZE7YOB0rFpdH8KVvedwcfup+4ZUa18W9DI9JjuycmVQkWf3P/XUU1i5ciW0Wi2eeuqp++77008/2Vy+3ZdFHT16NFJTU9G9e3cAwNatWzFv3jx29RMRkd3saZWkiq15j0rYOutHJG2/hFg8BZlM5uoq0V06nc78/6HVakX/v5EJpa0Z8ACLFy/GzJkzcePGDQBAjRo1MH36dAwePFjUCkqBXq+HTqdDRkaGTWMt+O2aiIiofApy8zElcCgK8wvw9l8LEFIvwup+VltS7Tx/i6H42CPSf4Va61vu8vL12VgS8JhLnour2L0E1ciRIzFy5EikpqbC29sbfn5+YtbLrTCMEhGRp3NYK7gP8Hv7L7B9+3bU2K7EyPru1douhwlymEQpR8q6d++On376CQEBARbb9Xo9+vbti23bttlcZrnWSQWA4ODg8hbhNhYK/5PkElQctE9ERK7myPOKqmsIsB1Ysv0b5IwIefAD7pLCxClPsWPHDhgMhhLb8/Ly8Oeff9pVpl0hNTk5GePHj8fWrVuRkpJS4ioD9lz6iuzHwElERBVZ7e6NsXnaalzafhomk6nE9eGlTAYBMhEmPYlRhiOcOHHC/PuZM2eQlJRkvm00GrFp0yZERFgfovEgdoXUoUOHIjExEVOmTEGVKlU8ZhCz2lQIjYlLUBERETlTnZY1oPJVIztNjzsnEhDRpHqJfUYp+pfYxtn9jtesWTPIZDLIZDLzZPp7eXt7Y+HChXaVbVdI3b17N/7880+7L3NFREREVJoSgdMb2NDha/z++++otl+LEc1LBlJyjYSEBAiCgJo1a+LAgQMWw0BVKhVCQkKgUCjsKtuukBoZGVmii98TvKLoB62i7DPqFhlXO7A2REREFZO182dhIyXwO7D6r19gNFYqUzm5RtePSVXIBChEWIhfjDIcoXr1olZtk0n8iV12hdS4uDhMnDgRn3/+OWrUqCFylaRrqfFHeBtdN3HKWlcGwDBMRESuV9o5SizqhpnYhvVQnzOV+Vh6hR5vYbhD6/UgFb27/14XLlzA9u3bkZKSUiK0Tp061eby7Aqp/fv3R05ODmrVqgUfHx8olUqL+2/fvm1PsfQADKNERCRV9pyjbAm29erVAwCcO3fO5uOQ4y1btgwjR45EUFAQwsLCLOYryWQy54VUT72qlK3d/eRcDPFERO7Fls/tzDp6AMDVq1fxcdY3UHmrHvgYKXT3e0pL6vvvv4+ZM2diwoQJopVpV0gdMmSIaBWoyBiaiIiIbGethVUIFTC30gTcuXMHPS43RZMmTR5YjjS6+8UJmFJfdOvOnTt45plnRC3T7sX8L126hBUrVuDSpUtYsGABQkJCsHHjRlSrVg2NGjUSs46SxzBK9GCOHq/mKHx/Ezlfae87Xd0g3Nl/BwvOLEeLRtEPLEcKLame4plnnsHvv/+OESNGiFamXSF1586deOSRR9ChQwfs2rULM2fOREhICI4fP44vv/wSa9euFa2C7qC0k++ywu+cXBMi6XLX98ODOxSJyFnC64Xhyv4LSDv3N1TCg9ctN5ZhH0fzlO7+2rVrY8qUKdi3bx8aN25cYr7S2LFjbS7TrpA6ceJEvP/++4iNjYW/v795e/fu3fHpp5/aU6RbWFm4Gt6F0rssKhERkScIrVcFAJB09qaLa1J2MpFCqlSvOFVs6dKl8PPzw86dO7Fz506L+2QymfNC6smTJ7Fq1aoS20NCQpCWlmZPkW5hqFd/aL3KPnHKXVuOiIiIpCisXjgAIPl8yZD6stegEtv0Xnq8jlccXi8qWtRfbHaF1ICAANy8eRNRUVEW248ePWr39VndmavDqLU3ZjFX142IiCqO+51vnOGvhi2wGHG4dT4VLykGusVl2T2lu7+YwWBAQkICatWqBS8vu6c+AbAzpA4YMAATJkzAmjVrIJPJYDKZsGfPHowfPx6DBw8uV4WkTKrd/QyiRETkDK4+3xRWL4RcIUdWVhY+TPwUlSIC77t/bqHrJ07JIIjSVS/17v6cnByMGTMGX331FQDg/PnzqFmzJsaMGYOIiAhMnDjR5jLtCqmzZs3CqFGjEBkZCaPRiIYNG8JoNGLgwIGYPHmyPUUSERGRxLm6JRVewMc1Z+LChQtodakRulfvft/d2d3vPJMmTcLx48exY8cOPPzww+btPXv2xPTp050XUlUqFZYtW4YpU6bg1KlTyMrKQvPmzVGnTh17inMbpY1JdfU3SyIiImeQwvnOu54fcAH48vTXuNT5/hOopNCSKocJcpT/uvZilOFI69atw+rVq9GuXTuLYRiNGjXCpUuX7CqzXIMFqlWrhmrVqpWnCLci1e5+IiIiT9Grfg+c+O0ogi7qHtiyK4WWVE8Zk5qamoqQkJAS27Ozs+0eO2xXSB0+/P5Xb1i+fLldlZE6lckElcno6moQERF5rFu1bgEAtp3Zhq8MX99331xDrjOqRABatWqF9evXY8yYMQBgDqZffPEFoqMffOEFa+wKqXfu3LG4XVBQgFOnTiE9PR3du99/fIg7G6h6DlpV2ZegkrIHvbGJiMpiiErcybL8bKIHqXJ3GaqbF5JcXJOyUQgCFEL5W0HFKMORZs2ahUceeQRnzpxBYWEhFixYgDNnzmDv3r0l1k0tK7tC6s8//1xim8lkwsiRI1GrVi27KlIR8cOWiCo6fs6Rs4XVDQMA3LqahvycfKh91C6u0f15Snd/x44dcezYMXzwwQdo3Lgxfv/9d7Ro0QLx8fFo3LixXWXKBEG8aH7u3Dl07doVN2+6z5UgykKv10On02Fx6hJ4a71dXR0iSRO7Zc0ZGLTI3bnj+85egiAgKCgIt2/fxrFjx9C0adNS9y0+f2dkZECrdW5PaPGxZ6Z/A422/PNZ8vQ5+G/ACy55Lq5SvlVW/+XSpUsoLHT9dXIdxdbufnc98dnzYeeuz5XEx78FIueT8vtO7AAtk8lQr149xMfH4+zZs/cNqVJQkVtS9Xp9mfe1J1jbFVJjY2MtbguCgJs3b2L9+vUYMmSIPUVWSJ70zdaTnmtppHySICJyFUd8NnrV9QLigdVnViPPkF/qflKYOFWRQ2pAQECZZ+4bjbZPPLcrpB49etTitlwuR3BwMObNm/fAmf/ubJXh/+BtYHc/ERGRIz2o4SOpwU38iT+huaC57756lR4jMULs6tFd27dvN/9+5coVTJw4EUOHDjXP5o+Pj8dXX32F2bNn21W+XSH13koRERERielBra83ahXNfdl7du9995VCS6pMMEEulH8hfpkIZYitS5cu5t/fffddzJ8/H88995x52+OPP47GjRtj6dKldvW0izpxqqKyd+A1u3+JiEhMHFpV5OzZs2jQoAF8fX2RmZlZapezFCZOfXRnObxFmDiVq8/B+ErDJTtxysfHB8ePHy9x9dHz58+jWbNmyMmx/epfdrWkNm/evMxjEI4cOWLPIdwKwygRETkDzzdFCqsWQq6QIzs7G3EJCxBYNdDqflJoSfUUkZGRWLZsGebOnWux/YsvvkBkZKRdZdoVUh9++GF89tlnaNiwoXncwb59+3D69GmMHDkS3t6eNW5Tyt9sV+d+6eoqEBGRB+jv/aLzDqYC5taag/Pnz6Px5YfQs2ZPq7tJYUyqXBAgF6HTWowyHOnjjz9Gv379sHHjRrRt2xYAcODAAVy4cAE//vijXWXaFVJTU1MxduxYvPfeexbbp02bhmvXrlXYy6L+mPs1fJSeFcCJiIjKwtmNIv61vYHzwKqTK3Crw1Wr++Tkur4ltSLP7r9X7969cf78eSxevBhnz54FADz22GMYMWKEc1tS16xZg0OHDpXY/vzzz6NVq1YVNqT28x4MrXfZx4GwFZOIiMgxwuuF4fCG425zeVRPEBkZiVmzZolWnl0h1dvbG3v27CkxOHbPnj3QaDSiVKwicGrXhxMwdBMRkVRUqVN0edTr56UdUityd/+JEyfw0EMPQS6X48SJE/fdt0mTJjaXb1dIHTduHEaOHIkjR46gTZs2AID9+/dj+fLlmDJlij1FkhuoaKGbivDLBxG5o4h6RSH1ptRDagXu7m/WrBmSkpIQEhKCZs2aQSaTwdqiUTKZzHmL+U+cOBE1a9bEggUL8O233wIAGjRogBUrVuDZZ5+1p8gKiSd/IiLXud8Xa34+u6/i/9e0JmmYhjlIu3Ybj5oGwNfXt8S++gI9hmOMs6voMRISEhAcHGz+XWx2hVQAePbZZxlI7+KHHRGR9PCzWXxS6lELCgpCYGAgbt++jQsXLqBZs2aurpJVRd395V+IX4rd/dWrV7f6u1jsDqnp6elYu3YtLl++jPHjxyMwMBBHjhxBaGgoIiIixKyj5EnpTVtW/PAmIiJbOevcUdbzav369bF3716cPXtWuiG1Anf3O5pdIfXEiRPo2bMndDodrly5gpdeegmBgYH46aefkJiYiK+/9qzFhhn4iIiIxHO/8+q9AbZevXrYu3cvzp0754xqkZPZFVJjY2MxdOhQzJ07F/7+/ubtvXv3xsCBA0WrnNRwnVQi8kTu2FtEnqF+/foAYF6XU4oq8ux+R7MrpB48eBCff/55ie0RERFISpL2LDsiIrINe4vIUcr7BahevXoAIO2WVEGATIyAyZBaNmq1Gnq9vsT28+fPm2d5VUS2Lub/c3bJIE9E5AxP+r5q82P4mUXuprgl9dy5czCZTJDL5S6ukWcrnq906dIlvPXWW+Wer2RXSH388cfx7rvv4ocffgBQtP5VYmIiJkyYgH79+tlTJD744ANMmjQJr7/+OuLi4gAAeXl5ePPNN/H9998jPz8fMTEx+OyzzxAaGmp+XGJiIkaOHInt27fDz88PQ4YMwezZs+Hl9c9T27FjB2JjY3H69GlERkZi8uTJGDp0qM11/DV7OXwU7O4nIulj4CSpsOcLU1nVrFkTXl5eyMnJwfXr1+2+/KYjyWGCHCLM7hehDEf693yll19+udzzlewKqfPmzcPTTz+NkJAQ5ObmokuXLrh58yaio6Mxc+ZMm8srHj7w76sRvPHGG1i/fj3WrFkDnU6H0aNH46mnnsKePXsAAEajEX369EFYWBj27t2LmzdvYvDgwVAqlebLciUkJKBPnz4YMWIEvvvuO2zduhUvvfQSqlSpgpiYGJvq+ZjvcGh92ZJKRERUVo4+F4ZGVcb1C8n44thHaBbY0OK+nOxchx67LDxlTKoj5ivZFVJ1Oh22bNmC3bt348SJE8jKykLLli3Ro0cPm8vKysrCoEGDsGzZMrz//vvm7RkZGfjyyy+xatUqdO/eHQCwYsUKNGjQAPv27UO7du3w+++/48yZM/jjjz8QGhqKZs2a4b333sOECRMwffp0qFQqLFmyBFFRUZg3bx6AoosO7N69Gx9//LHNIbU0DKNERESuEV43FNcvJOPG+WQ0697wwQ8gh3DEfCWbBm/Ex8fjt99+M9/u2LEjfH198dlnn+G5557DK6+8gvz8fJsqMGrUKPTp0wc9e/a02H748GEUFBRYbK9fvz6qVauG+Ph4c30aN25s0f0fExMDvV6P06dPm/f5d9kxMTHmMqzJz8+HXq+3+LmfJ31ftfpDREREjhVRpygDXJfo5VEVgiDaj5Q5Yr6STS2p7777Lrp27YpHH30UAHDy5Em8/PLLGDJkCBo0aIAPP/wQ4eHhmD59epnK+/7773HkyBEcPHiwxH1JSUlQqVQICAiw2B4aGmpO5ElJSRYBtfj+4vvut49er0dubi68vUuOMZ09ezZmzJhRYjvHpBI9mDt+QWNvCLk7d3zfieVOYyXWYQsKLitLvA56ox7AG66p2F2e0t3viPlKNoXUY8eO4b333jPf/v7779GmTRssW7YMABAZGYlp06aVKaReu3YNr7/+OrZs2QKNRmNbrR1s0qRJiI2NNd/W6/WSHIxNJEUMfETO50nvu38H0eJlqKS8VqonsDZfKSkpye75SoCNIfXOnTsWrZI7d+7EI488Yr7dunVrXLt2rUxlHT58GCkpKWjRooV5m9FoxK5du/Dpp59i8+bNMBgMSE9Pt2hNTU5ORlhYGAAgLCwMBw4csCg3OTnZfF/xv8Xb7t1Hq9VabUUFipqs1Wp1mZ4HERERua41t379+ggKCkLNmjVRWFhosbqPFMgFE+SCCLP77Shj0aJF+PDDD5GUlISmTZti4cKFaNOmzQMf9/333+O5557DE088gXXr1pXpWMXzlfbs2YPjx48jKysLLVq0KDHk0hY2/U+GhoYiISEBkZGRMBgMOHLkiEW3eGZmJpRKZZnK6tGjB06ePGmxbdiwYahfvz4mTJiAyMhIKJVKbN261dxMfO7cOSQmJiI6OhoAzOk8JSUFISEhAIAtW7ZAq9WiYcOG5n02bNhgcZwtW7aYy6jouFYiERE5g8vOHRpg6ZWiide/5n8J3DM1xpNn969evRqxsbFYsmQJ2rZti7i4OMTExODcuXPmzGTNlStXMH78eHTq1Mmuenbo0AEdOnSw67H/ZlNI7d27NyZOnIg5c+Zg3bp18PHxsXgSJ06cQK1atcpUlr+/Px566CGLbb6+vqhcubJ5+4svvojY2FgEBgZCq9VizJgxiI6ORrt27QAAvXr1QsOGDfHCCy9g7ty5SEpKwuTJkzFq1ChzS+iIESPw6aef4u2338bw4cOxbds2/PDDD1i/fr0tTx1A6UtQSTnUSbluRERE5Bjz58/Hyy+/jGHDhgEAlixZgvXr12P58uWYOHGi1ccYjUYMGjQIM2bMwJ9//on09PQyH2/s2LGoXbs2xo4da7H9008/xcWLF81r4NvCptn97733Hry8vNClSxcsW7YMy5Ytg0qlMt+/fPly9OrVy+ZKlObjjz/Go48+in79+qFz584ICwvDTz/9ZL5foVDgt99+g0KhQHR0NJ5//nkMHjwY7777rnmfqKgorF+/Hlu2bEHTpk0xb948fPHFF6ItP0VERERUGjkE0X4AlFh9yNqqSgaDAYcPH7boapfL5ejZs+d9Vzd69913ERISghdftP1ytT/++KPVFtT27dtj7dq1NpcH2NiSGhQUhF27diEjIwN+fn5QKBQW969ZswZ+fn52VQQoujLUvTQaDRYtWoRFixaV+pjq1auX6M7/t65du+Lo0aN216sYZ/cTERGRLcTu7v/3RG5rE9bT0tJgNBqtrm5U2gSz3bt348svv8SxY8fsqt+tW7eg0+lKbNdqtUhLS7OrTLsX87cmMDDQrkq4C5WxECpjoaurQeQ0fbSjrG5fry/9i6OzlFY3KZDC60NEQGEFPGdfu3YNWu0/Qw/FmOidmZmJF154AcuWLUNQUJBdZdSuXRubNm3C6NGjLbZv3LgRNWvWtKtMaU2BIyJJkXLYknLdiIiKyUSa3S+7W4ZWq7UIqdYEBQVBoVBYXd2oePWje126dAlXrlzBY489Zt5mMhUdz8vLC+fOnXvgnKPY2FiMHj0aqamp5iuFbt26FfPmzbNrPCrAkGqTGO0rD/zDuBdPokRERJ5NbhIgN4nQ3W9DGSqVCi1btsTWrVvRt29fAEWhc+vWrSVaOoGiZbz+veLS5MmTkZmZiQULFpRprfjhw4cjPz8fM2fONK+pX6NGDSxevBiDBw8uc93vxZBqg836pfABx6QSSZk9wwD4hZKIKprY2FgMGTIErVq1Qps2bRAXF4fs7GzzbP/BgwcjIiICs2fPhkajKbHiUvEa9f/efj8jR47EyJEjkZqaCm9v73LNUwIYUomogmHgJCIpkQviXNJUbmMR/fv3R2pqKqZOnYqkpCQ0a9YMmzZtMk+mSkxMhFxu0yJPZRYcHCxKOTJBkPjFYCVAr9dDp9Phh2sfwkfLllQiIiIxOHoCZPH5OyMjw6bhemIe+5eE2fDVlv/y79n6PDweNcklz6UskpOTMX78eGzduhUpKSn4d7w0Go02l8mWVCpByjO6iYio4nD0eSVH7/orTnmKoUOHIjExEVOmTEGVKlUgk8nKXSZDKpXAMEpERGJx5XJxeugBvOWy4wN3F/MXo7sf0u743r17N/788080a9ZMtDIZUomIiMhhxG74kPIaydaIvZi/VEVGRpbo4i8vhlQbcAkqIiKyBYdPic+W147d/c4TFxeHiRMn4vPPP0eNGjVEKZMh1QZcgoqIqGJwVmscwyh5Sktq//79kZOTg1q1asHHxwdKpdLi/tu3b9tcJkOqDdSFhdAUFri6GkREVE5bb8c55Tjln9NNZdUjcFyJbVIYkyozmSAziXDFKRHKcCR7ryp1PwypREREJCnWAidJ25AhQ0QvkyHVQ9nzAeCslgciIqo4PD1wekp3PwBcunQJK1aswKVLl7BgwQKEhIRg48aNqFatGho1amRzeQypNuga+JrViVPuGN7csc5EROR+XHm+ydbnuezYxTwlpO7cuROPPPIIOnTogF27dmHmzJkICQnB8ePH8eWXX2Lt2rU2l8mQSkRERG7P6phULz2ASU6viyeaOHEi3n//fcTGxsLf39+8vXv37vj000/tKpMhVQSldWWwtZIqKmd13/E9RERlZe3zQhItqSYTFCJMepJLfOLUyZMnsWrVqhLbQ0JCkJaWZleZDKk22HH7M/gWcq4mEcMjkWtUtEYRR3/hlUJLqqd09wcEBODmzZuIioqy2H706FFERETYVSZDqg1KG5NaGnf90CAiImmqaOcVRz8fKbSkeooBAwZgwoQJWLNmDWQyGUwmE/bs2YPx48dj8ODBdpXJkEpERERl4m4z9SXRkmoSIDeJ0JIqQhmONGvWLIwaNQqRkZEwGo1o2LAhjEYjBg4ciMmTJ9tVJkOqCCraN1vimEsiImvs+cxyt2ArNrlgglwQYUyqCGU4kkqlwrJlyzBlyhScOnUKWVlZaN68OerUqWN3mQypIlAVFrq6CiSyP1M+cspxVE45ChGR6zjr89Sa7Ex29ztbtWrVUK1aNVHKYkgVQaeQ8a6uQqlc+eFARETkynOkXqMHMMVlxwc8p7t/+PDh971/+fLlNpfJkCoCBkEiIiLrPL0ltWh2vxjd/dIOqXfu3LG4XVBQgFOnTiE9PR3du3e3q0yGVBFIuSXVHgzdREREZIuff/65xDaTyYSRI0eiVq1adpXJkGqDvamfwDeP66SS56hoX8DEJuUvdPb830n5+ZBnEeuzh939riWXyxEbG4uuXbvi7bfftvnxDKlEVCqGFvfF/ztyZ/b8/Ur1S7UcIi3mD/cLqQBw6dIlFNo5wZwhlYiIiNyetWArhTGpniI2NtbitiAIuHnzJtavX48hQ4bYVSZDKhEREbk9ay2pUujul5lMkJvKP3FKJkIZjnT06FGL23K5HMHBwZg3b94DZ/6XhiHVjZTWlcFuPSIi8nRSbUn1lDGp27dvF71MhlQbtA8eC61WW+b9xQ6PDKNERCRVUhwTKoWWVLIfQ6oNDt+YB7/Mss/ud9d1AFpHWL/O8cHrs51cEyIichdSPEdkSaElVRBp4pTE10lt3rw5ZDJZmfY9cuRImfZjSLVBy/A3bWpJFZuzPgCk+EFDRESuV1ojhlTp9XoA77q0DnKRxqSKUYYjPfzww/jss8/QsGFDREdHAwD27duH06dPY+TIkfD29ra5TIZUG9jakkpERETkCVJTUzF27Fi89957FtunTZuGa9eu8bKojmZrSypbJImIqCJxt/OaJLr7PWTi1Jo1a3Do0KES259//nm0atWKIdXR2JJKRERkG1cOEZBCd7/MZBJl+SipL0Hl7e2NPXv2oE6dOhbb9+zZA43GvuzEkGoDtqQSOQYn6xFVXPd7H7vbGFcq3bhx4zBy5EgcOXIEbdq0AQDs378fy5cvx5Qp9q2wwJBqA7akEjkGwyiRZ7Lnve9uwdZTuvsnTpyImjVrYsGCBfj2228BAA0aNMCKFSvw7LPP2lUmQ6oNPGV2PxG5P3c7kRNVVJ4SUgHg2WeftTuQWsOQKgKGRyJyJAZOInIH6enpWLt2LS5fvozx48cjMDAQR44cQWhoKCIiImwujyHVBuzuJyJXkPIXYbEDtKufqz3Px9V1ptJJYXa/QjBBIZR/0pMYZTjSiRMn0LNnT+h0Oly5cgUvvfQSAgMD8dNPPyExMRFff/21zWUypNrAGd39x6+89+CdiIgkQuzPLJWopdnOnufj6jo/SNManntZUEnM7hfE6e6XSfyKU7GxsRg6dCjmzp0Lf39/8/bevXtj4MCBdpXJkCox9nyYMNgSEVFppHyO8OQAXdEcPHgQn3/+eYntERERSEpKsqtMhlQHkvIHAxERkTN4ehAtmjglxmVRpd2Sqlar77ZcWzp//jyCg4PtKpMh1QYnr86Bnz/HpBIREVHZeMrs/scffxzvvvsufvjhBwCATCZDYmIiJkyYgH79+tlVJkMqEREROYw9vYqe3vrqjubNm4enn34aISEhyM3NRZcuXZCUlITo6GjMnDnTrjIZUm3QuPoEmyZOsbufiIjIdmKdP6Uwu99TWlJ1Oh22bNmCPXv24Pjx48jKykKLFi3Qs2dPu8tkSBUBwygREUlVRZuQa8vzKRojOctxlSkDuckk0phUaS9BVaxDhw7o0KGDKGUxpNqAY1KJiMjdSDlw2sOW5yOFltSKLj4+Hrdu3cKjjz5q3vb1119j2rRpyM7ORt++fbFw4UKo1Wqby2ZItUFp3f0V7QOAiIjIGncbKyqNltSK3d3/7rvvomvXruaQevLkSbz44osYOnQoGjRogA8//BDh4eGYPn26zWUzpBIREVGZuFujjBRaUuVGE+RGEbr7RSjDEY4dO4b33vvn7+L7779H27ZtsWzZMgBAZGQkpk2bxpDqaOzuJyIiEo+jW2al0JJa0d25cwehoaHm2zt37sQjjzxivt26dWtcu3bNrrIZUj3U/T4Y3O2bMhERuSdHn28k0ZJawbv7Q0NDkZCQgMjISBgMBhw5cgQzZsww35+ZmQmlUmlX2QypNlAVGqEqLHR1NUTx18Vppd4n9etQExGR+2hQe8aDd3IQKbSkVvTZ/b1798bEiRMxZ84crFu3Dj4+PujUqZP5/hMnTqBWrVp2lc2QSkRERER2ee+99/DUU0+hS5cu8PPzw1dffQWV6p/mruXLl6NXr152lc2QSlSBuLLF4kHu13pPRBWXK9/7WZn5Ljt2MbkgUne/IM3u/qCgIOzatQsZGRnw8/ODQqGwuH/NmjXw8/Ozq2yGVBvUq/WOTVecIs8ihRAmhToQOcL9voDx754kzWQq+hGjHAnT6XRWtwcGBtpdJkOqxPDDloioJH42VkyO7v0pGpM6x6HHIMdhSJUYKXfXehKeEImIHM/Rn7VS6O6HUSj6EaMcD8OQ6kAMOkRERB7OJBT9iFGOh2FItcG5S7Pg52/7tWfJ/bBF27n4hY6obEr7bPKk95Atn8/s7ndvDKk24MQpaRPzQ9qTPvCJyH1UtM8mj2gQ8JCJU47AkOpAFe3DhIiISEylnScrVHg1QqQxqeUvwt0wpNpAqt39XJqFiIgqErHOXZKYOEV2Y0i1gTt299vzbZTBloiIrHG3Fk5JjElld7/dGFJtcOWv6fD3k15Lqtg0rq4AERFJUsLpSa6ugk0ysyTQksrZ/XZjSCUiIiKHiWo022XHLmpJ/dhlx6fyYUi1QY0G061297vbN0siIiKxuTKMSprJBBjZ3W8PhlQbeEp3PxERka2k2GAjie5+sptLQ+rs2bPx008/4ezZs/D29kb79u0xZ84c1KtXz7xPXl4e3nzzTXz//ffIz89HTEwMPvvsM4SGhpr3SUxMxMiRI7F9+3b4+flhyJAhmD17Nry8/nl6O3bsQGxsLE6fPo3IyEhMnjwZQ4cOtam+pbWklkaKb1giIiKpE6tVVhLd/RyTajeXhtSdO3di1KhRaN26NQoLC/HOO++gV69eOHPmDHx9fQEAb7zxBtavX481a9ZAp9Nh9OjReOqpp7Bnzx4AgNFoRJ8+fRAWFoa9e/fi5s2bGDx4MJRKJWbNmgUASEhIQJ8+fTBixAh899132Lp1K1566SVUqVIFMTExDnt+7PogZ+MXI6KKjecVN2QUqbtfjDLcjEwQBMlE89TUVISEhGDnzp3o3LkzMjIyEBwcjFWrVuHpp58GAJw9exYNGjRAfHw82rVrh40bN+LRRx/FjRs3zK2rS5YswYQJE5CamgqVSoUJEyZg/fr1OHXqlPlYAwYMQHp6OjZt2vTAeun1euh0OmRkZLAllYiISCSODt32nr9FPfanj0PrrSx/ebkF0I3+xSXPxVUkNSY1IyMDABAYGAgAOHz4MAoKCtCzZ0/zPvXr10e1atXMITU+Ph6NGze26P6PiYnByJEjcfr0aTRv3hzx8fEWZRTvM27cOKv1yM/PR37+P+NYiroLbCf2m4+hl4iIXIktuXZwYXf/okWL8OGHHyIpKQlNmzbFwoUL0aZNG6v7Llu2DF9//bW5Qa9ly5aYNWtWqfs7g2RCqslkwrhx49ChQwc89NBDAICkpCSoVCoEBARY7BsaGoqkpCTzPvcG1OL7i++73z56vR65ubnw9va2uG/27NmYMUN6CxaL+eHAwEtEROQELuruX716NWJjY7FkyRK0bdsWcXFxiImJwblz5xASElJi/x07duC5555D+/btodFoMGfOHPTq1QunT59GRERE+etvB8mE1FGjRuHUqVPYvXu3q6uCSZMmITY21nxbr9cjMjKSs/uJiMijOauBgy225Td//ny8/PLLGDZsGICioZDr16/H8uXLMXHixBL7f/fddxa3v/jiC/z444/YunUrBg8e7JQ6/5skQuro0aPx22+/YdeuXahatap5e1hYGAwGA9LT0y1aU5OTkxEWFmbe58CBAxblJScnm+8r/rd42737aLXaEq2oAKBWq6FWlwyjnN1PRERkG48PnCJ39/97CKK1zGIwGHD48GFMmvRPDpHL5ejZsyfi4+PLdLicnBwUFBSYh2C6gktDqiAIGDNmDH7++Wfs2LEDUVFRFve3bNkSSqUSW7duRb9+/QAA586dQ2JiIqKjowEA0dHRmDlzJlJSUszN11u2bIFWq0XDhg3N+2zYsMGi7C1btpjLKKsbJyYj04aWVJVNpRMREVU814+9JWp5Ec0+FLU8hxO5uz8yMtJi87Rp0zB9+nSLbWlpaTAajVaHOp49e7ZMh5swYQLCw8NLzOlxJpeG1FGjRmHVqlX43//+B39/f/MYUp1OB29vb+h0Orz44ouIjY1FYGAgtFotxowZg+joaLRr1w4A0KtXLzRs2BAvvPAC5s6di6SkJEyePBmjRo0yf7MYMWIEPv30U7z99tsYPnw4tm3bhh9++AHr16+3qb7hTd73mBl1RFIn9omPyNO4XdgjAMC1a9cssoi1nt/y+uCDD/D9999jx44d0Gg0opdfVi4NqYsXLwYAdO3a1WL7ihUrzAvtf/zxx5DL5ejXr5/FYv7FFAoFfvvtN4wcORLR0dHw9fXFkCFD8O6775r3iYqKwvr16/HGG29gwYIFqFq1Kr744guHrpEqFTyRExGRNc46P3h8GBZE6u6/u2KoVqt9YINZUFAQFAqF1aGOxUMhS/PRRx/hgw8+wB9//IEmTZqUr87lJKl1UqWqeK2zv/4cw4lTREREbiIzKx8NOi107Tqps/4DrUaEdVLzCqB7Z0uZn0vbtm3Rpk0bLFy4EEDRKkrVqlXD6NGjrU6cAoC5c+di5syZ2Lx5s7nH2pUkMXHKXbC7X9rYakxERFQkNjYWQ4YMQatWrdCmTRvExcUhOzvbPNt/8ODBiIiIwOzZRRPb5syZg6lTp2LVqlWoUaOGeQimn58f/Pz8XPIcGFJtYOvEKSIiIhKXLcMHimbCL3RcZcrCRYv59+/fH6mpqZg6dSqSkpLQrFkzbNq0yTyZKjExEXK53Lz/4sWLYTAYzFf4LGZtYpazsLu/DOy9rBpb9oiIyNO5ckyqJC6LOqMHtJrytwnq8wqhm7aVl0Ul69iSSkREZBuPX4KK7MaQagOOSZU2tlwTSYcUggQ/E5xLCv/nkmQUin7EKMfDMKTagC2pRERlw4Doeez5P/eIYGsyFf2IUY6HYUi1gae3pPKkQ0RkG48IYUQOwpBqA7akElFFxkBF5ADs7rcbQyoREQFgbwlJR4X6wmQyAUZ299uDIdUGKkMhVAaFq6tBRBIR3OZjq9tTD7zh5JoQuV5p7wciezGk2iCo1QdWx6TyhETkmfjeJ0/DIGoHdvfbjSHVBmmHJiKfY1KJiMhDSeGLmdsFZc7utxtDKhEREbmN0oKy24VXeiCGVBuwu5+IiMjxKlTgZHe/3RhSbcDufiIiqigqVBCUMqNIs/vFKMPNMKSSQ93vQ5At0ERErnO/z2AGWJIChlQiIiKyIGYjgscHXnb3240h1QaljUkl+4j9wcWWWSIi6XHlZ3NmVr7Ljm3GxfztxpAqAleHI3apExGRq0mxxVSt1wNY7OpqkJ0YUkUgxTcmERGRM7m6UUSy52KTUPQjRjkehiHVgVz9hiUiIpIyyQZLMRkFkWb3M6TSfXAJKiIiIvFwYX66H4ZUG6jzC6Dxkrm6GiX4d15U6n2Zu0Y5sSZERERld7/zV4VhNAFGEbID10kld8QgSvQPfmkjkhaPCKL3wyWo7MaQagP/DvPgb8MSVDwhEjkf33fkiTw+CFKFxJDqQBXtQ4MnfyIi17LnvCLlz+6Kdp60it39dmNIdSApfzAQEZH7cfV5xSNCpdjY3W83hlQiIiIqE7FDMkMv3Q9Dqg0y97wJma/K1dUgIiKqEOwJvW4XbE0idffzsqh0P7ZOnJICV3cNERFRxeF2AVEKjAIgZ3e/PRhSK7jSPlAYXomIyFbOOncwDBPAkGoTT+nuZ7AlIiJn8IgwajQBcs7utwdDqg3csbtfTBVt6RMiInI8jwii98PufrsxpIog/49XXV0Fyar47c5ERJ5D3fNzV1eBPAhDqgj4piV3xi9ZRFRW9nxeePw5kt39dmNItUH+9teR7wFjUp31gcJwRETkXjw+cNqD3f12Y0i1gbrbAqjdbEyqPUGQ4ZGIiKyRwvmBQdlzMKQ6kBTezERE7qS0AMLP04rJIwKnSRCnq97EllQSkUe8+YhchKGlYuL/q2cR8/9bsudcowkQYUgqx6QSgScJIiJyLckGTnIqhlQbeMrEKSIiIrF4fOA0CoCME6fswZBKRESS4fGBhioedvfbjSHVBrbO7me3ORGRbfi56Vns+VJiy99IfrbB5vJJOhhSbbFxJOBT9u5+tQOrQkRE5HSPrXB1DWwKtmq9HsBKh9WlTNjdbzeGVFs8shhws3VSRfXrMFfXgIiIXMlZ5wEJhGHRsLvfbgypYqho4a0ifTgQEZHteB4gCWBItYWN3f1uq6KFbiIiIlcxCeJ01XMxf7ovV3f3MzwSEZEzlHa+YQur7cTqpmd3P92Xp7SkEhERWSOFxhIGZY/BkGoLW1tSpfBmJiIikipPCJxGAQBn99uDIVUMDKNEROQJPCFUio3d/XZjSBWDq9+0DMlEROQMXIKKnIgh1RbrXuaYVCIiImue/sbVNZAmtqTajSHVFn2X2TYmde0LjqsLERERSR/HpNqNIdWR+K3Sfgz4RETuxVmf2zy3egyGVCqJAZGIiKxhQLSdUQAEEbrquZg/uRwDIhERSRVbS21nFETp7WdIJXKm+30IMayTp6lIJ2UiIhEwpNqCs/vFxSBK9A++H4owrFNFYzQBgqz85bAlle4rvxBQiPCHRkRE1n03wNU1KN2g711dA3JH7O63G0OqLfqvsG0JKil/2BIRkW0q2mc6QzdJHEOqI/EDwLkq2gmEiMiRnPWZ6ennQnb3240h1RarhwE+SlfXwvHE/EBhcCQi8mxinwfcLfQypNqNIZVKYrAkIiJncLfASU7FkGoLW8ekLnvKcXUhIiJyBy//5OoauJZJpIlTAltSSUwV7Y3J0E1E5Nkq2nnNGYwmQCZCdz9DKhEREbkUgyARAIZUsoUzPzjZaktEnkrKn38M0LYrFAAxllhnSyq5pU8fd3UNiIjIE9hzvhn9i/j1cCfs7rebR4XURYsW4cMPP0RSUhKaNm2KhQsXok2bNq6uVvlJ+QOAAZqIyLMx2LqMrblnzZo1mDJlCq5cuYI6depgzpw56N27txNrbMljQurq1asRGxuLJUuWoG3btoiLi0NMTAzOnTuHkJAQV1evbD56xNU1ICIiEs/4ja6ugeMZXdPdb2vu2bt3L5577jnMnj0bjz76KFatWoW+ffviyJEjeOihh0R4AraTCYJntB+3bdsWrVu3xqeffgoAMJlMiIyMxJgxYzBx4sT7Plav10On0yHjvZ7Qajwm1xMREZWfC4Oo+fydkQGtLUtIinlsAGIcWQ9AB5T5udiae/r374/s7Gz89ttv5m3t2rVDs2bNsGTJEhGege08InEZDAYcPnwYkyZNMm+Ty+Xo2bMn4uPjS+yfn5+P/Px88+2MjAwAgH6ojeukuqvpbLElIiIrptsROPV68etR5kMXHduV7XFiPfvicvT/ej3VajXUarXFNltzDwDEx8cjNjbWYltMTAzWrVtX7rrbyyNCalpaGoxGI0JDQy22h4aG4uzZsyX2nz17NmbMmFFie2RkpMPqSEREJHkf61xdA7tkZmZCp3Nu3VUqFcLCwhCZlCRamX5+fiWyyLRp0zB9+nSLbbbmHgBISkqyun+SiPW3lUeEVFtNmjTJ4ttEeno6qlevjsTERKf/kUuJXq9HZGQkrl275vRuE6nga8DXAOBrUIyvA18DQNqvgSAIyMzMRHh4uNOPrdFokJCQAIPBIFqZgiBA9q+VAv7dilqReERIDQoKgkKhQHJyssX25ORkhIWFldjfWtM5AOh0Osm9AV1Bq9V6/OvA14CvAcDXoBhfB74GgHRfA1c2Lmk0Gmg0Gqcf19bcAwBhYWE27e8Mcpcd2YlUKhVatmyJrVu3mreZTCZs3boV0dHRLqwZERERkbjsyT3R0dEW+wPAli1bXJqTPKIlFQBiY2MxZMgQtGrVCm3atEFcXByys7MxbNgwV1eNiIiISFQPyj2DBw9GREQEZs+eDQB4/fXX0aVLF8ybNw99+vTB999/j0OHDmHp0qUuew4eE1L79++P1NRUTJ06FUlJSWjWrBk2bdpUYpCwNWq1GtOmTavQ4z7Kgq8DXwOArwHA16AYXwe+BgBfA6l6UO5JTEyEXP5Ph3r79u2xatUqTJ48Ge+88w7q1KmDdevWuWyNVMCD1kklIiIiIvfhEWNSiYiIiMi9MKQSERERkeQwpBIRERGR5DCkEhEREZHkMKSWwaJFi1CjRg1oNBq0bdsWBw4ccHWVHGbXrl147LHHEB4eDplMVuKavYIgYOrUqahSpQq8vb3Rs2dPXLhwwTWVdZDZs2ejdevW8Pf3R0hICPr27Ytz585Z7JOXl4dRo0ahcuXK8PPzQ79+/UosguzuFi9ejCZNmpgX6I6OjsbGjf9ct9sTXoN7ffDBB5DJZBg3bpx5mye8BtOnT4dMJrP4qV+/vvl+T3gNAOD69et4/vnnUblyZXh7e6Nx48Y4dOiQ+X5P+GysUaNGib8FmUyGUaNGAfCcvwVyHobUB1i9ejViY2Mxbdo0HDlyBE2bNkVMTAxSUlJcXTWHyM7ORtOmTbFo0SKr98+dOxeffPIJlixZgv3798PX1xcxMTHIy8tzck0dZ+fOnRg1ahT27duHLVu2oKCgAL169UJ2drZ5nzfeeAO//vor1qxZg507d+LGjRt46qmnXFhr8VWtWhUffPABDh8+jEOHDqF79+544okncPr0aQCe8RoUO3jwID7//HM0adLEYrunvAaNGjXCzZs3zT+7d+823+cJr8GdO3fQoUMHKJVKbNy4EWfOnMG8efNQqVIl8z6e8Nl48OBBi7+DLVu2AACeeeYZAJ7xt0BOJtB9tWnTRhg1apT5ttFoFMLDw4XZs2e7sFbOAUD4+eefzbdNJpMQFhYmfPjhh+Zt6enpglqtFv7v//7PBTV0jpSUFAGAsHPnTkEQip6zUqkU1qxZY97nr7/+EgAI8fHxrqqmU1SqVEn44osvPOo1yMzMFOrUqSNs2bJF6NKli/D6668LguA5fwfTpk0TmjZtavU+T3kNJkyYIHTs2LHU+z31s/H1118XatWqJZhMJo/5WyDnYkvqfRgMBhw+fBg9e/Y0b5PL5ejZsyfi4+NdWDPXSEhIQFJSksXrodPp0LZt2wr9emRkZAAAAgMDAQCHDx9GQUGBxetQv359VKtWrcK+DkajEd9//z2ys7MRHR3tUa/BqFGj0KdPH4vnCnjW38GFCxcQHh6OmjVrYtCgQUhMTATgOa/BL7/8glatWuGZZ55BSEgImjdvjmXLlpnv98TPRoPBgG+//RbDhw+HTCbzmL8Fci6G1PtIS0uD0WgscVWq0NBQJCUluahWrlP8nD3p9TCZTBg3bhw6dOhgvupGUlISVCoVAgICLPatiK/DyZMn4efnB7VajREjRuDnn39Gw4YNPeY1+P7773HkyBHzZQPv5SmvQdu2bbFy5Ups2rQJixcvRkJCAjp16oTMzEyPeQ0uX76MxYsXo06dOti8eTNGjhyJsWPH4quvvgLgmZ+N69atQ3p6OoYOHQrAc94P5Fwec1lUInuMGjUKp06dshiD50nq1auHY8eOISMjA2vXrsWQIUOwc+dOV1fLKa5du4bXX38dW7ZsgUajcXV1XOaRRx4x/96kSRO0bdsW1atXxw8//ABvb28X1sx5TCYTWrVqhVmzZgEAmjdvjlOnTmHJkiUYMmSIi2vnGl9++SUeeeQRhIeHu7oqVIGxJfU+goKCoFAoSsxOTE5ORlhYmItq5TrFz9lTXo/Ro0fjt99+w/bt21G1alXz9rCwMBgMBqSnp1vsXxFfB5VKhdq1a6Nly5aYPXs2mjZtigULFnjEa3D48GGkpKSgRYsW8PLygpeXF3bu3IlPPvkEXl5eCA0NrfCvgTUBAQGoW7cuLl686BF/BwBQpUoVNGzY0GJbgwYNzMMePO2z8erVq/jjjz/w0ksvmbd5yt8CORdD6n2oVCq0bNkSW7duNW8zmUzY+v/t3FtIFA8bBvBnSNdS013KUsQjZalJgVasQhHuhVqxVNQWpplUWEYEBhkUWWRYUAhCF3mhHYSCUDMxTFZXKUoTNYXETJfsYjufNMVS3+9C/stn2oHKnNrnBwu6887Muy/D8jAzO2Yz9Hr9FHY2NYKCguDt7T1mHh8+fEB9ff0/NQ8Rwd69e1FSUoLq6moEBQWNWR4ZGQlnZ+cxc+jo6EBPT88/NYeJjIyMYHBw0CFmEBsbi7a2NrS0tNhfUVFRSExMtP/9r89gIn19fejq6oKPj49DHAcAEBMTM+4xdI8ePUJAQAAAx/lu/E9BQQHmzJmD1atX299zlGOB/rCp/uWW2l25ckVcXFyksLBQHj58KLt27RKtVivPnj2b6tYmRW9vrzQ3N0tzc7MAkLNnz0pzc7M8efJERERycnJEq9XK9evXpbW1VYxGowQFBcnAwMAUd/777N69Wzw9PcVisYjNZrO/+vv77TVpaWni7+8v1dXV0tjYKHq9XvR6/RR2/ftlZmZKbW2tWK1WaW1tlczMTFEURW7duiUijjGDL/3/r/tFHGMGGRkZYrFYxGq1yp07d8RgMMjs2bPlxYsXIuIYM2hoaBAnJyfJzs6Wzs5OKSoqEldXV7l8+bK9xhG+G0VGn3Dj7+8vBw8eHLfMEY4F+rMYUn9AXl6e+Pv7i0ajkWXLlsm9e/emuqVJU1NTIwDGvbZt2yYio49aOXLkiMydO1dcXFwkNjZWOjo6prbp32yizw9ACgoK7DUDAwOyZ88e0el04urqKuvWrRObzTZ1TU+C1NRUCQgIEI1GI15eXhIbG2sPqCKOMYMvfRlSHWEGJpNJfHx8RKPRiK+vr5hMJnn8+LF9uSPMQETkxo0bsmjRInFxcZGFCxfK+fPnxyx3hO9GEZHKykoBMOFnc5Rjgf4cRURkSk7hEhERERF9Be9JJSIiIiLVYUglIiIiItVhSCUiIiIi1WFIJSIiIiLVYUglIiIiItVhSCUiIiIi1WFIJSIiIiLVYUglIiIiItVhSCUih2CxWKAoCt69e/fNusDAQOTm5v6RnoiI6OsYUolIVVJSUqAoChRFgUajwbx583D8+HEMDQ390najo6Nhs9ng6ekJACgsLIRWqx1Xd//+fezateuX9kVERL/OaaobICL6UlxcHAoKCjA4OIiKigqkp6fD2dkZhw4d+ultajQaeHt7f7fOy8vrp/dBRES/D8+kEpHquLi4wNvbGwEBAdi9ezcMBgPKysrw9u1bJCcnQ6fTwdXVFfHx8ejs7LSv9+TJE6xduxY6nQ5ubm4IDw9HRUUFgLGX+y0WC7Zv347379/bz9pmZWUBGH+5v6enB0ajEe7u7vDw8MCmTZvw/Plz+/KsrCwsWbIEly5dQmBgIDw9PbF582b09vbaa65du4aIiAjMmDEDs2bNgsFgwMePHyd3iEREfzmGVCJSvRkzZuDTp09ISUlBY2MjysrKcPfuXYgIEhIS8PnzZwBAeno6BgcHUVdXh7a2Npw6dQru7u7jthcdHY3c3Fx4eHjAZrPBZrPhwIED4+pGRkZgNBrx5s0b1NbWoqqqCt3d3TCZTGPqurq6UFpaivLycpSXl6O2thY5OTkAAJvNhi1btiA1NRXt7e2wWCxYv349RGQSJkVE9O/g5X4iUi0RgdlsRmVlJeLj41FaWoo7d+4gOjoaAFBUVAQ/Pz+UlpZi48aN6OnpwYYNGxAREQEACA4OnnC7Go0Gnp6eUBTlm7cAmM1mtLW1wWq1ws/PDwBw8eJFhIeH4/79+1i6dCmA0TBbWFiImTNnAgCSkpJgNpuRnZ0Nm82GoaEhrF+/HgEBAQBg74+IiL6OZ1KJSHXKy8vh7u6O6dOnIz4+HiaTCSkpKXBycsLy5cvtdbNmzcKCBQvQ3t4OANi3bx9OnDiBmJgYHD16FK2trb/UR3t7O/z8/OwBFQDCwsKg1Wrt+wRGbxH4L6ACgI+PD168eAEAWLx4MWJjYxEREYGNGzciPz8fb9++/aW+iIgcAUMqEanOqlWr0NLSgs7OTgwMDODChQtQFOW76+3YsQPd3d1ISkpCW1sboqKikJeXN+n9Ojs7j/lfURSMjIwAAKZNm4aqqircvHkTYWFhyMvLw4IFC2C1Wie9LyKivxlDKhGpjpubG+bNmwd/f384OY3elRQaGoqhoSHU19fb616/fo2Ojg6EhYXZ3/Pz80NaWhqKi4uRkZGB/Pz8Cfeh0WgwPDz8zT5CQ0Px9OlTPH361P7ew4cP8e7duzH7/B5FURATE4Njx46hubkZGo0GJSUlP7w+EZEjYkglor/C/PnzYTQasXPnTty+fRsPHjzA1q1b4evrC6PRCADYv38/KisrYbVa0dTUhJqaGoSGhk64vcDAQPT19cFsNuPVq1fo7+8fV2MwGBAREYHExEQ0NTWhoaEBycnJWLlyJaKion6o7/r6epw8eRKNjY3o6elBcXExXr58+dW+iIhoFEMqEf01CgoKEBkZiTVr1kCv10NEUFFRYb/cPjw8jPT0dISGhiIuLg4hISE4d+7chNuKjo5GWloaTCYTvLy8cPr06XE1iqLg+vXr0Ol0WLFiBQwGA4KDg3H16tUf7tnDwwN1dXVISEhASEgIDh8+jDNnziA+Pv7nhkBE5CAU4XNQiIiIiEhleCaViIiIiFSHIZWIiIiIVIchlYiIiIhUhyGViIiIiFSHIZWIiIiIVIchlYiIiIhUhyGViIiIiFSHIZWIiIiIVIchlYiIiIhUhyGViIiIiFSHIZWIiIiIVOd/v383DX5KLv0AAAAASUVORK5CYII=\n" }, "metadata": {} }, { "output_type": "stream", "name": "stdout", "text": [ "2024-04-25 20:01:43,232 Setting max_seq=4, max_extra_seq=8\n", "2024-04-25 20:01:59,812 alphafold2_ptm_model_1_seed_000 recycle=0 pLDDT=87.1 pTM=0.715\n", "2024-04-25 20:02:00,559 alphafold2_ptm_model_1_seed_000 recycle=1 pLDDT=86.9 pTM=0.71 tol=0.646\n", "2024-04-25 20:02:00,560 alphafold2_ptm_model_1_seed_000 took 10.9s (1 recycles)\n", "2024-04-25 20:02:01,328 alphafold2_ptm_model_2_seed_000 recycle=0 pLDDT=87 pTM=0.716\n", "2024-04-25 20:02:02,077 alphafold2_ptm_model_2_seed_000 recycle=1 pLDDT=89.4 pTM=0.753 tol=0.409\n", "2024-04-25 20:02:02,079 alphafold2_ptm_model_2_seed_000 took 1.5s (1 recycles)\n", "2024-04-25 20:02:02,847 alphafold2_ptm_model_3_seed_000 recycle=0 pLDDT=71.2 pTM=0.536\n", "2024-04-25 20:02:03,596 alphafold2_ptm_model_3_seed_000 recycle=1 pLDDT=85 pTM=0.686 tol=1.13\n", "2024-04-25 20:02:03,598 alphafold2_ptm_model_3_seed_000 took 1.5s (1 recycles)\n", "2024-04-25 20:02:04,366 alphafold2_ptm_model_4_seed_000 recycle=0 pLDDT=67.1 pTM=0.565\n", "2024-04-25 20:02:05,113 alphafold2_ptm_model_4_seed_000 recycle=1 pLDDT=86.4 pTM=0.707 tol=2.5\n", "2024-04-25 20:02:05,114 alphafold2_ptm_model_4_seed_000 took 1.5s (1 recycles)\n", "2024-04-25 20:02:05,883 alphafold2_ptm_model_5_seed_000 recycle=0 pLDDT=86.1 pTM=0.708\n", "2024-04-25 20:02:06,633 alphafold2_ptm_model_5_seed_000 recycle=1 pLDDT=89.9 pTM=0.757 tol=0.274\n", "2024-04-25 20:02:06,635 alphafold2_ptm_model_5_seed_000 took 1.5s (1 recycles)\n", "2024-04-25 20:02:09,007 alphafold2_ptm_model_1_seed_001 recycle=0 pLDDT=79.6 pTM=0.649\n", "2024-04-25 20:02:09,759 alphafold2_ptm_model_1_seed_001 recycle=1 pLDDT=86.5 pTM=0.696 tol=1.77\n", "2024-04-25 20:02:09,760 alphafold2_ptm_model_1_seed_001 took 1.5s (1 recycles)\n", "2024-04-25 20:02:10,532 alphafold2_ptm_model_2_seed_001 recycle=0 pLDDT=80.8 pTM=0.651\n", "2024-04-25 20:02:11,281 alphafold2_ptm_model_2_seed_001 recycle=1 pLDDT=88.3 pTM=0.727 tol=0.593\n", "2024-04-25 20:02:11,282 alphafold2_ptm_model_2_seed_001 took 1.5s (1 recycles)\n", "2024-04-25 20:02:12,058 alphafold2_ptm_model_3_seed_001 recycle=0 pLDDT=82.9 pTM=0.673\n", "2024-04-25 20:02:12,809 alphafold2_ptm_model_3_seed_001 recycle=1 pLDDT=88.8 pTM=0.725 tol=0.746\n", "2024-04-25 20:02:12,811 alphafold2_ptm_model_3_seed_001 took 1.5s (1 recycles)\n", "2024-04-25 20:02:13,579 alphafold2_ptm_model_4_seed_001 recycle=0 pLDDT=86.7 pTM=0.708\n", "2024-04-25 20:02:14,326 alphafold2_ptm_model_4_seed_001 recycle=1 pLDDT=89.4 pTM=0.735 tol=0.304\n", "2024-04-25 20:02:14,327 alphafold2_ptm_model_4_seed_001 took 1.5s (1 recycles)\n", "2024-04-25 20:02:15,099 alphafold2_ptm_model_5_seed_001 recycle=0 pLDDT=88.9 pTM=0.751\n", "2024-04-25 20:02:15,849 alphafold2_ptm_model_5_seed_001 recycle=1 pLDDT=90.1 pTM=0.75 tol=0.308\n", "2024-04-25 20:02:15,851 alphafold2_ptm_model_5_seed_001 took 1.5s (1 recycles)\n", "2024-04-25 20:02:18,150 alphafold2_ptm_model_1_seed_002 recycle=0 pLDDT=76.1 pTM=0.631\n", "2024-04-25 20:02:18,901 alphafold2_ptm_model_1_seed_002 recycle=1 pLDDT=88.1 pTM=0.724 tol=0.483\n", "2024-04-25 20:02:18,902 alphafold2_ptm_model_1_seed_002 took 1.5s (1 recycles)\n", "2024-04-25 20:02:19,671 alphafold2_ptm_model_2_seed_002 recycle=0 pLDDT=72.3 pTM=0.592\n", "2024-04-25 20:02:20,419 alphafold2_ptm_model_2_seed_002 recycle=1 pLDDT=82.8 pTM=0.682 tol=3.2\n", "2024-04-25 20:02:20,421 alphafold2_ptm_model_2_seed_002 took 1.5s (1 recycles)\n", "2024-04-25 20:02:21,196 alphafold2_ptm_model_3_seed_002 recycle=0 pLDDT=74.4 pTM=0.601\n", "2024-04-25 20:02:21,944 alphafold2_ptm_model_3_seed_002 recycle=1 pLDDT=86.8 pTM=0.69 tol=0.524\n", "2024-04-25 20:02:21,946 alphafold2_ptm_model_3_seed_002 took 1.5s (1 recycles)\n", "2024-04-25 20:02:22,722 alphafold2_ptm_model_4_seed_002 recycle=0 pLDDT=84.6 pTM=0.668\n", "2024-04-25 20:02:23,475 alphafold2_ptm_model_4_seed_002 recycle=1 pLDDT=86.9 pTM=0.693 tol=0.376\n", "2024-04-25 20:02:23,477 alphafold2_ptm_model_4_seed_002 took 1.5s (1 recycles)\n", "2024-04-25 20:02:24,248 alphafold2_ptm_model_5_seed_002 recycle=0 pLDDT=82.9 pTM=0.697\n", "2024-04-25 20:02:24,997 alphafold2_ptm_model_5_seed_002 recycle=1 pLDDT=89.1 pTM=0.746 tol=1.97\n", "2024-04-25 20:02:24,998 alphafold2_ptm_model_5_seed_002 took 1.5s (1 recycles)\n", "2024-04-25 20:02:27,339 alphafold2_ptm_model_1_seed_003 recycle=0 pLDDT=85 pTM=0.688\n", "2024-04-25 20:02:28,089 alphafold2_ptm_model_1_seed_003 recycle=1 pLDDT=90.1 pTM=0.76 tol=0.566\n", "2024-04-25 20:02:28,090 alphafold2_ptm_model_1_seed_003 took 1.5s (1 recycles)\n", "2024-04-25 20:02:28,859 alphafold2_ptm_model_2_seed_003 recycle=0 pLDDT=46.7 pTM=0.363\n", "2024-04-25 20:02:29,604 alphafold2_ptm_model_2_seed_003 recycle=1 pLDDT=75.2 pTM=0.621 tol=5.82\n", "2024-04-25 20:02:29,606 alphafold2_ptm_model_2_seed_003 took 1.5s (1 recycles)\n", "2024-04-25 20:02:30,375 alphafold2_ptm_model_3_seed_003 recycle=0 pLDDT=40.1 pTM=0.245\n", "2024-04-25 20:02:31,121 alphafold2_ptm_model_3_seed_003 recycle=1 pLDDT=50.8 pTM=0.407 tol=7.32\n", "2024-04-25 20:02:31,123 alphafold2_ptm_model_3_seed_003 took 1.5s (1 recycles)\n", "2024-04-25 20:02:31,892 alphafold2_ptm_model_4_seed_003 recycle=0 pLDDT=85.9 pTM=0.694\n", "2024-04-25 20:02:32,644 alphafold2_ptm_model_4_seed_003 recycle=1 pLDDT=91.6 pTM=0.782 tol=0.351\n", "2024-04-25 20:02:32,645 alphafold2_ptm_model_4_seed_003 took 1.5s (1 recycles)\n", "2024-04-25 20:02:33,420 alphafold2_ptm_model_5_seed_003 recycle=0 pLDDT=88.4 pTM=0.747\n", "2024-04-25 20:02:34,175 alphafold2_ptm_model_5_seed_003 recycle=1 pLDDT=91.5 pTM=0.788 tol=0.381\n", "2024-04-25 20:02:34,176 alphafold2_ptm_model_5_seed_003 took 1.5s (1 recycles)\n", "2024-04-25 20:02:34,208 reranking models by 'plddt' metric\n", "2024-04-25 20:02:34,209 rank_001_alphafold2_ptm_model_4_seed_003 pLDDT=91.6 pTM=0.782\n", "2024-04-25 20:02:34,210 rank_002_alphafold2_ptm_model_5_seed_003 pLDDT=91.5 pTM=0.788\n", "2024-04-25 20:02:34,211 rank_003_alphafold2_ptm_model_1_seed_003 pLDDT=90.1 pTM=0.76\n", "2024-04-25 20:02:34,212 rank_004_alphafold2_ptm_model_5_seed_001 pLDDT=90.1 pTM=0.75\n", "2024-04-25 20:02:34,212 rank_005_alphafold2_ptm_model_5_seed_000 pLDDT=89.9 pTM=0.757\n", "2024-04-25 20:02:34,213 rank_006_alphafold2_ptm_model_4_seed_001 pLDDT=89.4 pTM=0.735\n", "2024-04-25 20:02:34,214 rank_007_alphafold2_ptm_model_2_seed_000 pLDDT=89.4 pTM=0.753\n", "2024-04-25 20:02:34,215 rank_008_alphafold2_ptm_model_5_seed_002 pLDDT=89.1 pTM=0.746\n", "2024-04-25 20:02:34,216 rank_009_alphafold2_ptm_model_3_seed_001 pLDDT=88.8 pTM=0.725\n", "2024-04-25 20:02:34,216 rank_010_alphafold2_ptm_model_2_seed_001 pLDDT=88.3 pTM=0.727\n", "2024-04-25 20:02:34,217 rank_011_alphafold2_ptm_model_1_seed_002 pLDDT=88.1 pTM=0.724\n", "2024-04-25 20:02:34,218 rank_012_alphafold2_ptm_model_4_seed_002 pLDDT=86.9 pTM=0.693\n", "2024-04-25 20:02:34,219 rank_013_alphafold2_ptm_model_1_seed_000 pLDDT=86.9 pTM=0.71\n", "2024-04-25 20:02:34,219 rank_014_alphafold2_ptm_model_3_seed_002 pLDDT=86.8 pTM=0.69\n", "2024-04-25 20:02:34,220 rank_015_alphafold2_ptm_model_1_seed_001 pLDDT=86.5 pTM=0.696\n", "2024-04-25 20:02:34,221 rank_016_alphafold2_ptm_model_4_seed_000 pLDDT=86.4 pTM=0.707\n", "2024-04-25 20:02:34,222 rank_017_alphafold2_ptm_model_3_seed_000 pLDDT=85 pTM=0.686\n", "2024-04-25 20:02:34,223 rank_018_alphafold2_ptm_model_2_seed_002 pLDDT=82.8 pTM=0.682\n", "2024-04-25 20:02:34,223 rank_019_alphafold2_ptm_model_2_seed_003 pLDDT=75.2 pTM=0.621\n", "2024-04-25 20:02:34,224 rank_020_alphafold2_ptm_model_3_seed_003 pLDDT=50.8 pTM=0.407\n", "2024-04-25 20:02:35,819 Done\n", "Already exists!!!\n", "All structures are saved in `/content/structures.zip`\n" ] } ] }, { "cell_type": "code", "metadata": { "id": "KK7X9T44pWb7", "cellView": "form", "colab": { "base_uri": "https://localhost:8080/", "height": 542 }, "outputId": "92827d54-d5f6-4654-da78-503249689cab" }, "source": [ "#@title Display 3D structure (unrelaxed) {run: \"auto\"}\n", "import py3Dmol\n", "import glob\n", "import matplotlib.pyplot as plt\n", "from colabfold.colabfold import plot_plddt_legend\n", "from colabfold.colabfold import pymol_color_list, alphabet_list\n", "rank_num = 20 #@param {type:\"raw\"}\n", "color = \"lDDT\" #@param [\"chain\", \"lDDT\", \"rainbow\"]\n", "show_sidechains = False #@param {type:\"boolean\"}\n", "show_mainchains = False #@param {type:\"boolean\"}\n", "\n", "pdb_filename = f\"/content/structures/pred_{rank_num}.pdb\"\n", "pdb_file = glob.glob(pdb_filename)\n", "\n", "def show_pdb(rank_num=1, show_sidechains=False, show_mainchains=False, color=\"lDDT\"):\n", " model_name = f\"rank_{rank_num}\"\n", " view = py3Dmol.view(js='https://3dmol.org/build/3Dmol.js',)\n", " view.addModel(open(pdb_file[0],'r').read(),'pdb')\n", "\n", " if color == \"lDDT\":\n", " view.setStyle({'cartoon': {'colorscheme': {'prop':'b','gradient': 'roygb','min':50,'max':90}}})\n", " elif color == \"rainbow\":\n", " view.setStyle({'cartoon': {'color':'spectrum'}})\n", " elif color == \"chain\":\n", " chains = len(queries[0][1]) + 1 if is_complex else 1\n", " for n,chain,color in zip(range(chains),alphabet_list,pymol_color_list):\n", " view.setStyle({'chain':chain},{'cartoon': {'color':color}})\n", "\n", " if show_sidechains:\n", " BB = ['C','O','N']\n", " view.addStyle({'and':[{'resn':[\"GLY\",\"PRO\"],'invert':True},{'atom':BB,'invert':True}]},\n", " {'stick':{'colorscheme':f\"WhiteCarbon\",'radius':0.3}})\n", " view.addStyle({'and':[{'resn':\"GLY\"},{'atom':'CA'}]},\n", " {'sphere':{'colorscheme':f\"WhiteCarbon\",'radius':0.3}})\n", " view.addStyle({'and':[{'resn':\"PRO\"},{'atom':['C','O'],'invert':True}]},\n", " {'stick':{'colorscheme':f\"WhiteCarbon\",'radius':0.3}})\n", " if show_mainchains:\n", " BB = ['C','O','N','CA']\n", " view.addStyle({'atom':BB},{'stick':{'colorscheme':f\"WhiteCarbon\",'radius':0.3}})\n", "\n", " view.zoomTo()\n", " return view\n", "\n", "show_pdb(rank_num, show_sidechains, show_mainchains, color).show()\n", "if color == \"lDDT\":\n", " plot_plddt_legend().show()" ], "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "application/3dmoljs_load.v0": "
\n

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n
\n", "text/html": [ "
\n", "

3Dmol.js failed to load for some reason. Please check your browser console for error messages.

\n", "
\n", "" ] }, "metadata": {} }, { "output_type": "display_data", "data": { "text/plain": [ "
" ], "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzcAAAAtCAYAAACTdJW6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAdXklEQVR4nO3deVxUVf8H8O8MzAwDCGKIbDK5oOLG4oIoCi5JqaFPKdZjrmSWmP5yLcMFtfKllpqPWplZZpRliVbuJCMgoY+yuCCgIosMmqACSsbA5/cHz9y8zLDppDJ8377m9ZJzzz33zNwz557vXc5IAIAYY4wxxhhjrJGTPu4KMMYYY4wxxpgxcHDDGGOMMcYYMwkc3DDGGGOMMcZMAgc3jDHGGGOMMZPAwQ1jjDHGGGPMJHBwwxhjjDHGGDMJHNwwxhhjjDHGTAIHN4wxxhhjjDGTwMENY4wxxhhjzCRwcMMYY4wxxhgzCRzcMMYYY4wxxkwCBzeMMcYYY4wxk8DBDWOMMcYYY8wkcHDDGGOMMcYYMwkc3DDGGGOMMcZMAgc3//P000/TunXrHnc12GO0dOlS8vLyeuTbHT9+PL3//vuPfLv3e+mll+jDDz98rHVoiqKjo8nDw4MqKiqMWm6fPn3oxx9/NGqZjGjAgAEUGRlp1DI/+eQTev75541aJhMDQK+99hq1aNGCJBIJJScnU2BgIP3f//1fres97nFBeno6OTo6UklJiVHL5f7+8anPOKM+bbM6iURCUVFRDa7PP9XGGuLGjRvk4OBAeXl5xisUDACgUqmwdu1a0d9EBCKChYUFVCoVxowZg+joaNF6WVlZQj4igrW1NTp37ozp06cjIyNDyBcQECDKV/0VEBBgvDdD9GhfD2jEiBEICgoyuOzYsWMgIqSkpDxw+Q21ZMkSeHp6PrLtAUBycjJatGiBkpKSBy7DUHv69ttvRXmOHj0Kb29vyOVytGvXDtu2bRMtP3PmDOzs7HDr1q0Hrsf/avOIXw9u4sSJGDly5EOV8bB8fHywY8cOUdqff/6JhQsXws3NDXK5HCqVClu3bhXl+f7779GxY0coFAp07doVv/76q2j5zz//jPbt26OiouKh6keP8N/DysnJweTJk+Hk5ASZTAY3NzfMnDkTN27cEOULCAjArFmzRGnr1q2DXC7X+97cb8+ePejQoYPwmVbv++9/ff/998J62dnZGDZsGJRKJVq2bIm5c+eivLxcWH7v3j04Ozvj2LFjD/0ZNJ5vXxWNRoMZM2agTZs2kMvlcHV1xYgRI3DkyBEjlP63ffv2QSaTIT4+HhqNBuXl5SgsLERxcXGt61UfFxiDofZXk3/9619YsWKFKO3AgQPw9fWFtbU17O3t8cILLyArK0uU51H1941hqNEYxxn1aZvVERF2797d4PoYamMNUVxcjFmzZsHNzQ0WFhbw8/PDiRMnRHkqKyuxaNEiODo6wsLCAoMHDxaNjwFgzpw5mDJlygPXozoObv7HUHCzbNkyaDQaZGdnQ61WY+rUqZBIJKKGoDvAHTlyBBqNBpcuXUJUVBQGDhwIpVIpdNKFhYXQaDTQaDQ4ceKEaB2NRoPCwkLjvZnG0OMA2L17N6RSKXJzc/WWTZ48GT179nygcu/du/dA6z2O4CY0NBTTpk1r0Dr5+fmiwRERYdu2bUJb0mg0KCsrE5ZfvnwZlpaWmD17Ns6fP48NGzbAzMwMBw4cEJXbs2dP/Oc//3m4N9SIhlePO7iJjY2Fra2taF8BQHBwMHx9fXH48GFkZWXh+PHjiIuLE5bHx8fDzMwMq1atwvnz5xEeHg6ZTIYzZ84IebRaLVq1aoVffvnloerYWIKbS5cuwcHBAf7+/oiJiUF2djb27duHLl26wN3dXdS/Vh9cLl68GJaWlti/f3+t2xg8eDA++OAD4W+tViv6zmk0GkRERMDa2lo4WaHVatG1a1cMGTIESUlJ2LdvH+zt7fHOO++Iyp47dy5Gjx79UJ8B0Ji+fVXHTmdnZ3Tu3Bm7du1Ceno6zp49iw8//BAdO3Z8yNLFNmzYADc3twav9ziDm+zsbMhkMuTl5Qlply9fhkKhwDvvvIOLFy/i1KlTGDBgALy9vUV5HlV/3xiGGk1lnPEgwY2hNlZWVobr16/Xu4yQkBB07twZarUamZmZWLJkCWxsbERlrly5Era2toiKikJKSgqCg4PRpk0b0bHv7NmzUCgURhsLN5ngJiAgAGFhYQgLC4ONjQ2eeuophIeHo7KyEoDh4MZQp7Z48WJIpVJcuHABwN/BTVJSkihfRUUFAgMDoVKpoNVqRctqWsdoGkOPA6C8vBytWrXC8uXLReklJSWwtrbG5s2bAVQNAv39/WFhYQFXV1e8+eabKC0tFfLrAtHx48ejWbNmmDhxIgYOHIiwsDBRudevX4dMJqvxrGD1TqeiogIRERFwcXGBXC6Hp6enaAD04osvirYxa9YsEBHS0tIAVHV+lpaWOHz4sMHtabVa2Nra1msAWlZWhu+++w7PPvsszMzMRGfc6urU5s+fjy5duojSxo4dq3c2KyIiAv7+/nXWpXaNZ3hVV3ATExODXr16QS6Xw9HREQsWLBCCyp9//hm2trbCdzspKQlEhAULFgjrh4aGYty4cTWWHxYWpjeg3b9/P2xtbWvt4ENCQjB8+HBRmq+vr16QPHnyZLzyyis1llMfjSW4efbZZ+Hq6oq7d++K0jUaDSwtLfH6668LabrBZWVlJWbMmIHmzZsjPj6+1vKvX78OiUSCs2fP1prPy8tLdPZx3759kEqlKCgoENI2b94MGxsb0eBIrVZDLpfr1b+hGs+3D3juuefg4uIi6st1bt68Kfw/OzsbwcHBsLKyQrNmzTBmzBjR56nrt7dv3w6VSgUbGxuMHTtWOPM9ceJE0VU1lUoFQD/IuHbtGkaMGAELCws8/fTT2LFjh9444ObNmwgNDYW9vT2aNWuGgQMHIjk5+YHrQkR6V110Vq9erTfw/uGHH2Bubi66Irt3715IJBL89ddfAB5tf98YhhpP6jijpjYC6LfN/Px8DBs2TGib33zzjV7bJCJs2bIFo0aNglKpRPv27bFnz55aPxtDbezKlSuQyWQYOXIkfvrpJ6FdGXL37l2YmZnpjWF8fHzw7rvvAqi6auPo6IjVq1cLy2/dugWFQqF3pbxNmzb4/PPPa61zfTWpZ26++uorMjc3pxMnTtD69evpo48+os8//7xBZcyaNYsA0J49e2rNJ5VKadasWZSdnU2nTp2qs9wrV66QRCKhmJiYBtWnMTM3N6cJEybQl19+SQCE9B9++IEqKiro5ZdfpkuXLtGzzz5LL774IqWmptLOnTspLi6OZsyYISprzZo15OnpSUlJSbRo0SJ69dVXKTIyku7duyfk2bFjB7m4uNCgQYPqVb/169fThx9+SGvWrKHU1FQKCgqi4OBgyszMJCKigIAA0f5Sq9Vkb28vpJ08eZLKy8upb9++BstPTU2l27dvU8+ePWusQ0JCAr3++uvk5OREs2fPpq5du1JycjLZ2tqK8oWFhZG9vT317t2bvvjiC9HnmZCQQEOGDBHlDwoKooSEBFFa79696cSJE6LPrKm6evUqDRs2jHr16kUpKSm0efNm2rp1K61YsYKIiPr3708lJSWUlJRERPr7XpcWGBhY4zZiY2P19v3evXupZ8+etGrVKnJxcaEOHTrQ3LlzqaysTMjTkP0ZGxv7IG+/USkqKqKDBw/S9OnTSalUipY5OjrSuHHjaOfOnaLvhFarpVdeeYV27dpFarW6xu+oTlxcHFlaWpKHh0eNeU6dOkXJyckUGhoqpCUkJFC3bt2oVatWQlpQUBAVFxfTuXPnhLSePXuSVqulxMTEer/vxqyoqIgOHDhAYWFhZGVlpbe8efPmRERUWVlJI0eOpKKiIlKr1XT48GG6fPkyjR07VpT/0qVLFBUVRb/88gv98ssvpFaraeXKlURU1Y8vW7aMXF1dSaPR0MmTJw3WadKkSZSbm0tHjx6lXbt20aZNm+j69euiPGPGjKHr16/T/v376dSpU+Tj40ODBw+moqKietfFz8+Ppk6dShqNhjQaDbVu3dpgfQz1Dz169CCpVErbtm2jiooKun37Nn399dc0ZMgQkslkRMT9fXVP4jijtjZiyIQJEyg/P59iYmLoxx9/pM8++0yvbRIRRUREUEhICKWmptKwYcNo3LhxorZZnaE2plKpKCEhgVQqFU2bNo2cnJxo5syZBsexWq2WKioqyMLCQpSuVCopLi6OiIiysrKooKBA1CZtbW3J19f3nz1mGSVEagQCAgLg4eEhXKkBgAULFsDDwwNA/a/cAECrVq3wxhtvAKj9KkxaWhqICDt37hSlG1onLy8PHTt2RGJi4oO9wfs1htMp/6P7jI4ePSqk9e/fXzjjHBoaitdee020TmxsLKRSqXBJU6VSYdSoUaI8ZWVlsLOzE3323bt3x9KlS2usS/UrN87OznjvvfdEeXr16oXp06cDAFJTUyGRSHD9+nUUFRVBLpdj+fLlGDt2LABgxYoV6Nu3b43b2717N8zMzERtEgByc3OxYsUKuLu7w9LSEuPGjcPBgwdrfH5i2bJliIuLw+nTp7Fy5UooFAqsX79eWO7u7o73339ftM6vv/4KIhKdKU5JSQER4cqVKzXWuW6N59xxbVduFi5ciI4dO4r2zcaNG2FtbS3sBx8fH+Fs1KhRo/Dee+9BLpejpKQEeXl5ICK9+4rvZ2tri+3bt4vSgoKCoFAoMHz4cCQmJuLXX3+FSqXCpEmThDwymQyRkZGi9TZu3AgHBwdR2p49eyCVSh/quZvGcOXm999/r/Xq5UcffQQiwrVr1wBUHQvkcjnkcrlwlbUua9euRdu2bWvN88YbbwjHE52pU6di6NChorQ7d+6AiLBv3z5Rup2dHb788st61acmjeXbl5iYCCLCTz/9VGu+Q4cOwczMDDk5OULauXPnQETCff1LliyBpaWl6Mz3vHnz4OvrK/y9du1a4YqNzv1nx9PT00VlAn8fm3TjgNjYWNjY2ODPP/8UldOuXTt8+umn9a5LfW9L8/T0xLJly/TSY2Ji4ODgADMzMxAR/Pz8RFe6HmV/31iGGk/aOKMhbURX95MnTwrLMzMzRW0TqLpyEx4eLvxdWloKIqr1dtua2phOeXk59u7di9GjRwvPd65evVp05dTPzw8BAQG4evUqtFotvv76a0ilUnTo0AFA1W3URIT8/HxR2WPGjEFISIgo7a233kJgYGCN9WmIJnXlpk+fPiSRSIS//fz8KDMzs8EzFQEQlVNbPiKqV14XFxe6cOEC9e7du0F1aew6depEffv2pS+++IKIiC5evEixsbHC2c+UlBT68ssvydraWngFBQVRZWUlZWVlCeVUP/tgYWFB48ePF8o9ffo0nT17liZNmlSvehUXF1N+fj7169dPlN6vXz9KS0sjIqKuXbtSixYtSK1WU2xsLHl7e9OIESNIrVYTUd1n7svKykihUOi1j/DwcAoPD6du3bpRbm4u7dixg4YOHUpSqeGv66JFi6hfv37k7e1NCxYsoPnz59Pq1avr9T7vpzvrfffu3Qava2rS0tLIz89PtG/69etHpaWlwowuuit3ACg2NpZeeOEF8vDwoLi4OFKr1eTs7Ezu7u41bqOsrEzvjFdlZSVJJBL65ptvqHfv3jRs2DD66KOP6KuvvhJdvakPpVJJlZWVJn9mVkfX39aHv78/WVtb06JFi0ir1daZ39C+qr48MjJSdNWmoZRKZZP57tV3X6WlpVHr1q1FVzc6d+5MzZs3F/phoqpZzZo1ayb87eTkZPDMdm3bMTc3px49eghpnTp1Eq4gEVUdi0pLS+mpp54SHY+ysrLo0qVLRquLjqE2V1BQQFOnTqWJEyfSyZMnSa1Wk1wup9GjRzeo/RM1rf7+SRtnNKSNpKenk7m5Ofn4+Ahp7du3Jzs7O7283bt3F/5vZWVFNjY2tba9uvo1c3Nzev755+mHH36grKwscnR0pHnz5tEHH3wg5Pn6668JALm4uJBCoaCPP/6YXn755RrHK7UxZh/YpIIbYygsLKQ//viD2rRpU2deXedbn7xNWWhoKP34449UUlJC27Zto3bt2lFAQAAREZWWltK0adMoOTlZeKWkpFBmZia1a9dOKMPQrQ2vvvoqHT58mPLy8mjbtm00aNAgUqlURqu3RCKhAQMGUExMjBDIdO/ene7du0dnz56l48ePC+/DEHt7e7p79y799ddfovTw8HB6++23KTExkTp06EAzZsxo0O0qvr6+lJeXJwxqHR0d6dq1a6I8165dIxsbG9FtPLrL1y1btqz3tpqywMBAiouLo5SUFJLJZNSpUycKDAwU2kNt+56oav/fvHlTlObk5EQuLi6i2w49PDwIgBBU1bQ/HR0dRWlFRUVkZWWld6uWqWnfvj1JJBLRYPd+aWlpZGdnJ2rX3bp1o+joaDp69CiNHTu2zgDH0L66365du+ju3bs0YcIEUXpN+0q37H5FRUVN5rvn7u5OEomELly4YJTydLdk6UgkEqqsrDRK2TqlpaXk5OQkOhYlJydTeno6zZs3z+h1MdTmNm7cSLa2trRq1Sry9vamAQMG0I4dOyg6Olo4RnB/b9iTNM74p9prQ8utq18DQMeOHaOpU6eSh4cHXbx4kRYvXkyzZ88W8rRr147UajWVlpZSbm4unThxgsrLy6lt27ZE9Hc/V99jlrHaY5MKbqoPEH///Xdyd3cnMzOzepexfv16kkqlNGrUqFrzVVZW0scff0xt2rQhb2/vB6lukxESEkJSqZQiIyNp+/btNGXKFOGMuY+PD50/f57at2+v95LL5bWW261bN+rZsydt2bKFIiMjacqUKfWuk42NDTk7O1N8fLwoPT4+njp37iz8rTt7HxMTQ4GBgSSVSmnAgAG0evVqunfvnt6Vn/vp5ro/f/68KL19+/b0wQcfUE5ODkVGRtLNmzdp4MCB1KFDB1q+fLnoTJIhycnJZGdnRwqFgoiqrlBGR0eL8hw+fJj8/PxEaWfPniVXV1eyt7evtfymwMPDgxISEkRnQ+Pj46lZs2bk6upKRH8/d7N27VrhIKkLbnTtoTbe3t56+75fv36Un59PpaWlQlpGRgZJpVJhuw3Zn02h73nqqafomWeeoU2bNuld3SooKKBvvvmGxo4dq3eF1MvLi6Kjo+nYsWMUEhJC5eXlNW7D29ubCgoKahwIbN26lYKDg/UOzH5+fnTmzBnR2dPDhw+TjY2NqB+5dOkS/fnnn01ifxERtWjRgoKCgmjjxo10584dveW3bt0ioqrvYW5uLuXm5grLzp8/T7du3RJ9fg+rU6dOpNVqRc8VpKenC/UgqjoWFRQUkLm5ud6xqCF9plwur9fdIob6h7t37+qdEdeNX3SDWO7vDXsSxxn10bFjR9JqtcLznURVV55qC0rqy1AbI6o65ixatIjatm1Lw4cPJ61WS1FRUXT58mWKiIggNzc3vXWsrKzIycmJbt68SQcPHqSRI0cSUdXJfUdHR1GbLC4upsTExH/2mGWUm9sagYCAAFhbW+Ott97ChQsXEBkZCSsrK3zyyScAap8KOicnRzQV9MqVK4V8hqaC3rNnjzAV9G+//aZXF37mRl9oaCjs7OxgZmaGq1evCukpKSlQKpUICwtDUlISMjIyEBUVJZqhpLbnoz777DPI5XLY2dnpTblbXfVnbtauXQsbGxt89913uHDhAhYsWACZTCZ6jiI5ORkSiQQKhUKY/nXt2rUwMzNDnz596nzfPj4+2LBhQ535bt++jS1btsDf3x9SqRS3b98GUDVTzpYtW3DmzBlkZmZi06ZNsLS0xOLFi4V1dVODzps3D2lpadi4caPBqUEnTpxohHnmG8td/1XvNzAwEElJSaJXTk4O8vLyYGlpibCwMKSlpSEqKgr29vZYsmSJqAwvLy+YmZkJM+4UFhZCJpOBiIQZFWvy8ccfo0ePHqK0kpISuLq6YvTo0Th37hzUajXc3d3x6quvCnni4+Nhbm6ONWvWIC0tDUuWLNGbChqo6vNqu5+6PhrDMzcAkJGRAXt7e/Tv3x9qtRo5OTnYv38/unbtWudU0KmpqWjZsiVGjRpV48xAWq0WLVu2xM8//6y3LDMzExKJxOC97bqpoIcOHYrk5GQcOHAALVu21JsKetu2bXU+01MfjefbVzV9t6OjozAVdEZGBs6fP4/169ejU6dOAKpmWvLy8kL//v1x6tQpJCYmokePHqLfhTM0tW71Z2zqeuYGqJpxz9vbG7///jv++9//wt/fH0qlUji2VFZWwt/fH56enjh48CCysrIQHx+PhQsXCs9D1KcuU6dORa9evZCVlYU//vijxmfi9u7dCwcHB9Fsq9HR0ZBIJIiIiEBGRgZOnTqFoKAgqFQq4XmaR9nfN7ahxpM4zgD020j1tjlkyBD4+PggMTERp0+fFsaX69atE/KQgecObW1t9X7j6H6G2lh2djakUikGDRqEr776yuBshvc7cOAA9u/fj8uXL+PQoUPw9PSEr6+vqC9duXIlmjdvjj179iA1NRUjR47Umwr6zp07UCqVRvm9L+Dh+6dGIyAgANOnT8frr78OGxsb2NnZYeHChbVOBU1UNVWjXC6Hm5sbQkJC9IKV6j/kZmlpCQ8PD0yfPh2ZmZkG62IouNGl3f/AW1Ny/PhxEBGGDRumt+zEiRN45plnYG1tDSsrK3Tv3l30oH9tnU5JSQksLS2FSQBqY2gq6KVLl8LFxQUymUxvKmhdHjs7O9HDgLppgd9+++06t7lp06Z6BUH3u3jxotBx7N+/H15eXsJn4+npiU8++UTvgHn06FF4eXlBLpejbdu2eh1eWVkZbG1tkZCQ0KC6NGaGpmUlIoSGhgKofSponerTfwNVD2k6OjrWuf3CwkJYWFjoBUFpaWkYMmQIlEolXF1dMXv2bL0pgr///nt06NABcrkcXbp00fsRz7y8PMhkMoO/7WCqrly5gokTJ6JVq1aQyWRo3bo13nzzzXr9iOeZM2fg4OCAkSNH1vj7FfPnz8dLL72kl/7OO++gdevWNQ5Sr1y5gueeew5KpRL29vaYM2eOXjsaOnSo6Dd0mor8/HyEhYVBpVJBLpfDxcUFwcHBouNgfaeCvt+DBDcajQbDhw+HQqGAm5ubMFXv/ceW4uJivPnmm3B2dhba2Lhx44QJD+pTl/T0dPTp0wdKpRJENU8FXV5eDmdnZ72g5Ntvv4W3tzesrKzQsmVLBAcH602Mwf29YU/iOAOoO7jJz8/Hc889B4VCAZVKhcjISDg4OAgn54EHC24MtbE7d+4gOzu7zvehs3PnTrRt21Y4ToaFhen9OKzuRzxbtWoFhUKBwYMHIz09XZQnMjLSqL9vJQHuu+/ChAUGBpKXlxetW7fucVeFPUJXrlyhdu3a0cmTJ0UP5D0pysrKqGPHjrRz5069S7SP0ubNm2n37t106NChx1aHpmjevHlUXFxMn376qVHLXbBgAd28eZM+++wzo5bblBUUFFCXLl3o9OnTRn1279y5czRo0CDKyMjQm+KdNW0bN26kvXv30sGDB41aLvf3xvWoxxl5eXnUunVrOnLkCA0ePPihyvqn2lhD9enTh2bOnEn//ve/jVKeuVFKYewJU15eToWFhRQeHk59+vR5IgMboqrZQbZv3043btx4rPWQyWS0YcOGx1qHpujdd9+lTZs2UWVl5QPNLlMTBwcH0UOf7OE5OjrS1q1bKScnx6jBjUajoe3bt3Ngw/RMmzaNbt26RSUlJaLZtR4W9/fG8ajGGb/99huVlpZSt27dSKPR0Pz58+npp5+mAQMGPHTZ/1Qba4gbN27QCy+8QC+//LLRyuQrN8wkxcTECA/h79q1i7p16/a4q8QYY4wxE/GoxhkHDx6kOXPm0OXLl6lZs2bUt29fWrdunVFPspiaJhPcMMYYY4wxxkxbk5oKmjHGGGOMMWa6OLhhjDHGGGOMmQQObhhjjDHGGGMmgYMbxhhjjDHGmEng4IYxxhhjjDFmEji4YYwxxhhjjJkEDm4YY4wxxhhjJoGDG8YYY4wxxphJ4OCGMcYYY4wxZhI4uGGMMcYYY4yZBA5uGGOMMcYYYyaBgxvGGGOMMcaYSeDghjHGGGOMMWYSOLhhjDHGGGOMmYT/BwIEulkpbuv7AAAAAElFTkSuQmCC\n" }, "metadata": {} } ] } ] }