|
|
|
|
|
""" |
|
@author: bvani |
|
""" |
|
import numpy as np |
|
from sys import stdout |
|
|
|
def RegSpaceClustering(z, min_dist, max_centers=200, batch_size=100,randomseed=0,periodicity=0): |
|
'''Regular space clustering. |
|
Args: |
|
data: ndarray containing (n,d)-shaped float data |
|
max_centers: the maximum number of cluster centers to be determined, integer greater than 0 required |
|
min_dist: the minimal distances between cluster centers |
|
''' |
|
num_observations, d = z.shape |
|
p = np.hstack((0,np.random.RandomState(seed=randomseed).permutation(num_observations-1)+1)) |
|
data = z[p] |
|
center_list = data[0, :].copy().reshape(d,1) |
|
centerids=[p[0]+1] |
|
i = 1 |
|
while i < num_observations: |
|
x_active = data[i:i+batch_size, :] |
|
differences=np.expand_dims(center_list.T,0) - np.expand_dims(x_active,1) |
|
|
|
differences=np.max(np.stack((differences,periodicity-differences)),axis=0) |
|
|
|
distances = np.sqrt((np.square(differences)).sum(axis=-1)) |
|
indice = tuple(np.nonzero(np.all(distances > min_dist, axis=-1))[0]) |
|
if len(indice) > 0: |
|
|
|
|
|
center_list = np.hstack((center_list, x_active[indice[0]].reshape(d,1))) |
|
centerids.append(p[i+indice[0]]+1) |
|
i += indice[0] |
|
else: |
|
i += batch_size |
|
if len(centerids) >= max_centers: |
|
print("%i centers: Exceeded the maximum number of cluster centers!\n"%len(centerids)) |
|
print("Please increase dmin!\n") |
|
raise ValueError |
|
print("Found %i centers!"%len(centerids)) |
|
return center_list,centerids |
|
|
|
def make_biased_plumed(plumedfile,weights,colvar,height,biasfactor,width1,width2,gridmin1,gridmin2,gridmax1,gridmax2,temperature): |
|
f_unb=open(plumedfile) |
|
f=open('plumed_biased.dat','w') |
|
lines=f_unb.readlines() |
|
p=lines.pop(-2) |
|
w0=",".join([str(weights[0][i]) for i in range (len(weights[0]))]) |
|
w1=",".join([str(weights[1][i]) for i in range (len(weights[1]))]) |
|
lines.insert(-1,"\nsigma1: COMBINE ARG=%s COEFFICIENTS=%s PERIODIC=NO"%(colvar,w0)) |
|
lines.insert(-1,"\nsigma2: COMBINE ARG=%s COEFFICIENTS=%s PERIODIC=NO"%(colvar,w1)) |
|
|
|
lines.insert(-1,"\nMETAD ...\n \ |
|
LABEL=metad\n \ |
|
ARG=sigma1,sigma2\n \ |
|
PACE=500 HEIGHT=%f TEMP=%i\n \ |
|
BIASFACTOR=%i\n \ |
|
SIGMA=%f,%f\n \ |
|
FILE=HILLS GRID_MIN=%f,%f GRID_MAX=%f,%f GRID_BIN=200,200\n \ |
|
CALC_RCT RCT_USTRIDE=500\n \ |
|
... METAD\n"%(height,temperature,biasfactor,width1,width2,gridmin1,gridmin2,gridmax1,gridmax2)) |
|
|
|
f.writelines(lines) |
|
f.write("\n PRINT ARG=%s,sigma1,sigma2,metad.rbias STRIDE=500 FILE=COLVAR_biased.dat"%colvar) |
|
|
|
f.close() |
|
|
|
|
|
|
|
def triginvert(x,sinx,cosx): |
|
if cosx<0: |
|
if sinx>0: |
|
x=np.pi-x |
|
elif sinx<0: |
|
x=-np.pi-x |
|
|
|
return x |
|
|
|
def getTrp8(CVs): |
|
sinx=CVs[:,12] |
|
cosx=CVs[:,13] |
|
x=np.arcsin(sinx) |
|
chi1= chi2=[triginvert(a,b,c) for (a,b,c) in zip(x,sinx,cosx)] |
|
|
|
sinx=CVs[:,116] |
|
cosx=CVs[:,117] |
|
x=np.arcsin(sinx) |
|
chi2=[triginvert(a,b,c) for (a,b,c) in zip(x,sinx,cosx)] |
|
|
|
return np.asarray(chi1),np.asarray(chi2) |
|
|