Af2rave / data /ravefuncs.py
introvoyz041's picture
Migrated from GitHub
740946a verified
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
@author: bvani
"""
import numpy as np
from sys import stdout
from openmmplumed import PlumedForce
from simtk.openmm.app import *
from simtk.openmm import *
from simtk.unit import *
#from openmm.app import *
#from openmm import *
#from openmm.unit import *
import pdbfixer
import random
import random
random.seed(5)
def RegSpaceClustering(z, min_dist, max_centers=200, batch_size=100,randomseed=0,periodicity=0):
'''Regular space clustering.
Args:
data: ndarray containing (n,d)-shaped float data
max_centers: the maximum number of cluster centers to be determined, integer greater than 0 required
min_dist: the minimal distances between cluster centers
'''
random.seed(5)
num_observations, d = z.shape
p = np.hstack((0,np.random.RandomState(seed=randomseed).permutation(num_observations-1)+1))
data = z[p]
center_list = data[0, :].copy().reshape(d,1)
centerids=[p[0]+1]
i = 1
while i < num_observations:
x_active = data[i:i+batch_size, :]
differences=np.abs(np.expand_dims(center_list.T,0) - np.expand_dims(x_active,1))
differences=np.max(np.stack((differences,periodicity-differences)),axis=0)
distances = np.sqrt((np.square(differences)).sum(axis=-1))
indice = tuple(np.nonzero(np.all(distances > min_dist, axis=-1))[0])
if len(indice) > 0:
# the first element will be used
#print(center_list.shape,x_active.shape,x_active[indice[0]].shape)
center_list = np.hstack((center_list, x_active[indice[0]].reshape(d,1)))
centerids.append(p[i+indice[0]]+1)
i += indice[0]
else:
i += batch_size
if len(centerids) >= max_centers:
print("%i centers: Exceeded the maximum number of cluster centers!\n"%len(centerids))
print("Please increase dmin!\n")
raise ValueError
print("Found %i centers!"%len(centerids))
return center_list,centerids
def fix_pdb(index):
"""
fixes the raw pdb from colabfold using pdbfixer.
This needs to be performed to cleanup the pdb and to start simulation
Fixes performed: missing residues, missing atoms and missing Terminals
"""
raw_pdb=f'pred_{index}.pdb';
# fixer instance
fixer = pdbfixer.PDBFixer(raw_pdb)
#finding and adding missing residues including terminals
fixer.findMissingResidues()
fixer.findMissingAtoms()
fixer.addMissingAtoms()
out_handle = open(f'fixed_{index}.pdb','w')
PDBFile.writeFile(fixer.topology, fixer.positions, out_handle,keepIds=True)
def run_unbiased(on_gpu,plumedfile,dt,temp,freq,nstep,index):
"""
Runs an unbiased simulation on the cluster center using openMM.
The MD engine also uses plumed for on the fly calculations
input : raw pdb from colabfold
forcefields : amber03 and tip3p
output : fixed_{index}.pdb, unb_{index}.pdb, COLVAR_unb
"""
if plumedfile != "None":
use_plumed=True
outfreq = 0
chkpt_freq=0
save_chkpt_file=False
print(f'We are at {os.getcwd()}')
#fixing PDBs to avoid missing residue or terminal issues
fix_pdb(index);
pdb_fixed=f'fixed_{index}.pdb'
#Get the structure and assign force field
pdb = PDBFile(pdb_fixed)
forcefield = ForceField('amber03.xml', 'tip3p.xml')
# Placing in a box and adding hydrogens, ions and water
modeller = Modeller(pdb.topology, pdb.positions)
modeller.addHydrogens(forcefield)
modeller.addSolvent(forcefield, padding=0.5*nanometers, model='tip3p', neutralize=True, positiveIon='Na+', negativeIon='Cl-')
#Create simulation system and assign integrator
system = forcefield.createSystem(modeller.topology,nonbondedMethod=PME,nonbondedCutoff=1.2*nanometer,
switchDistance=1.0*nanometer,constraints=HBonds)
integrator = NoseHooverIntegrator(temp*kelvin, freq/picoseconds,
dt*picoseconds);
if use_plumed:
fid=open(plumedfile,'r')
ff=fid.read()
force=PlumedForce(ff)
system.addForce(force)
#system.addForce(MonteCarloBarostat(press*bar, temp*kelvin)) #Pressure control
if on_gpu:
platform = Platform.getPlatformByName('CUDA')
properties = {'Precision': 'double','CudaCompiler':'/usr/local/cuda/bin/nvcc'}
simulation = Simulation(modeller.topology, system, integrator, platform)
else:
platform = Platform.getPlatformByName('CPU')
simulation = Simulation(modeller.topology, system, integrator, platform)
simulation.context.setPositions(modeller.positions)
simulation.minimizeEnergy()
minim_positions = simulation.context.getState(getPositions=True,enforcePeriodicBox=True).getPositions()
PDBFile.writeFile(simulation.topology, minim_positions, open(f'minim_{index}.pdb', 'w'))
if save_chkpt_file:
simulation.reporters.append(CheckpointReporter(chkpt_fname, chkpt_freq))
simulation.step(nstep)
positions = simulation.context.getState(getPositions=True,enforcePeriodicBox=True).getPositions()
PDBFile.writeFile(simulation.topology, positions, open(f'unb_{index}.pdb', 'w'))
def make_biased_plumed(plumedfile,weights,colvar,height,biasfactor,width1,width2,gridmin1,gridmin2,gridmax1,gridmax2,temperature):
f_unb=open(plumedfile)
f=open('plumed_biased.dat','w')
lines=f_unb.readlines()
p=lines.pop(-2)
w0=",".join([str(weights[0][i]) for i in range (len(weights[0]))])
w1=",".join([str(weights[1][i]) for i in range (len(weights[1]))])
lines.insert(-1,"\nsigma1: COMBINE ARG=%s COEFFICIENTS=%s PERIODIC=NO"%(colvar,w0))
lines.insert(-1,"\nsigma2: COMBINE ARG=%s COEFFICIENTS=%s PERIODIC=NO"%(colvar,w1))
lines.insert(-1,"\nMETAD ...\n \
LABEL=metad\n \
ARG=sigma1,sigma2\n \
PACE=500 HEIGHT=%f TEMP=%i\n \
BIASFACTOR=%i\n \
SIGMA=%f,%f\n \
FILE=HILLS GRID_MIN=%f,%f GRID_MAX=%f,%f GRID_BIN=200,200\n \
CALC_RCT RCT_USTRIDE=500\n \
... METAD\n"%(height,temperature,biasfactor,width1,width2,gridmin1,gridmin2,gridmax1,gridmax2))
f.writelines(lines)
f.write("\n PRINT ARG=%s,sigma1,sigma2,metad.rbias STRIDE=500 FILE=COLVAR_biased.dat"%colvar)
f.close()
def run_biased(on_gpu,plumedfile,dt,temp,freq,nstep,index,save_chkpt_file=True,chkpt_freq=500000,restart=False):
#Saves check point file after every 500000 steps (by default)
use_plumed=True
outfreq = 5000
#Pdb from previous unbiased run
pdb = PDBFile(f'unb_{index}.pdb')
forcefield = ForceField('amber03.xml', 'tip3p.xml')
system = forcefield.createSystem(pdb.topology,nonbondedMethod=PME,nonbondedCutoff=1.2*nanometer,
switchDistance=1.0*nanometer,constraints=HBonds)
integrator = NoseHooverIntegrator(temp*kelvin, freq/picoseconds,
dt*picoseconds)
if use_plumed:
fid=open(plumedfile,'r')
ff=fid.read()
force=PlumedForce(ff)
system.addForce(force)
#system.addForce(MonteCarloBarostat(press*bar, temp*kelvin)) #pressure control
if on_gpu:
platform = Platform.getPlatformByName('CUDA')
properties = {'Precision': 'double','CudaCompiler':'/usr/local/cuda/bin/nvcc'}
simulation = Simulation(pdb.topology, system, integrator, platform)
else:
platform = Platform.getPlatformByName('CPU')
simulation = Simulation(pdb.topology, system, integrator, platform)
simulation.context.setPositions(pdb.positions)
if restart:
simulation.loadCheckpoint('chkptfile.chk')
if save_chkpt_file:
simulation.reporters.append(CheckpointReporter('chkptfile.chk', chkpt_freq))
simulation.reporters.append(StateDataReporter(stdout, outfreq, step=True))
simulation.step(nstep)
positions = simulation.context.getState(getPositions=True,enforcePeriodicBox=True).getPositions()
PDBFile.writeFile(simulation.topology, positions, open(f'final_{index}.pdb', 'w'))
#Functions for CSP demo only
def triginvert(x,sinx,cosx):
if cosx<0:
if sinx>0:
x=np.pi-x
elif sinx<0:
x=-np.pi-x
return x
def getTrp8(CVs):
sinx=CVs[:,12]
cosx=CVs[:,13]
x=np.arcsin(sinx)
chi1= chi2=[triginvert(a,b,c) for (a,b,c) in zip(x,sinx,cosx)]
sinx=CVs[:,116]
cosx=CVs[:,117]
x=np.arcsin(sinx)
chi2=[triginvert(a,b,c) for (a,b,c) in zip(x,sinx,cosx)]
return np.asarray(chi1),np.asarray(chi2)