"""Multilang Dataset loading script.""" from datasets import DatasetInfo, BuilderConfig, Version, GeneratorBasedBuilder, DownloadManager from datasets import SplitGenerator, Split, Features, Value from typing import Generator, Tuple, Union import os _DESCRIPTION = """ This dataset includes Arabic/Dutch/Spanish Twitter data for CLEF 2024 CheckThat! Lab task1. """ _CITATION = """\ @inproceedings{barron2024clef, title={The CLEF-2024 CheckThat! Lab: Check-Worthiness, Subjectivity, Persuasion, Roles, Authorities, and Adversarial Robustness}, author={Barr{\'o}n-Cede{\~n}o, Alberto and Alam, Firoj and Chakraborty, Tanmoy and Elsayed, Tamer and Nakov, Preslav and Przyby{\l}a, Piotr and Stru{\ss}, Julia Maria and Haouari, Fatima and Hasanain, Maram and Ruggeri, Federico and others}, booktitle={European Conference on Information Retrieval}, pages={449--458}, year={2024}, organization={Springer} } """ _LICENSE = "Your dataset's license here." class CLEF24EsData(GeneratorBasedBuilder): """A multilingual text dataset.""" BUILDER_CONFIGS = [ BuilderConfig(name="clef24_tweet_data", version=Version("1.0.0"), description="Multilingual dataset for text classification."), ] DEFAULT_CONFIG_NAME = "clef24_tweet_data" # Default configuration name. def _info(self): """Construct the DatasetInfo object.""" return DatasetInfo( description=_DESCRIPTION, features=Features({ "tweet_id": Value("string"), "tweet_url": Value("string"), "tweet_text": Value("string"), "class_label": Value("string"), }), supervised_keys=("tweet_text", "class_label"), homepage="https://gitlab.com/checkthat_lab/clef2024-checkthat-lab/-/tree/main/task1", citation=_CITATION, license=_LICENSE, ) def _split_generators(self, dl_manager: DownloadManager) -> list[SplitGenerator]: """Returns SplitGenerators.""" # Assumes your dataset is located in "data" data_dir = os.path.abspath("data") splits = {"train": Split.TRAIN, "dev": Split.VALIDATION, "test": Split.TEST} return [ SplitGenerator( name=splits[split], gen_kwargs={ "filepath": os.path.join(data_dir, f"{split}.tsv"), "split": splits[split] }, ) for split in splits.keys() ] def _generate_examples(self, filepath: Union[str, os.PathLike], split: str) -> Generator[Tuple[str, dict], None, None]: """Yields examples.""" with open(filepath, encoding="utf-8") as f: for id_, row in enumerate(f): if id_ == 0: # Optionally skip header continue cols = row.strip().split('\t') yield f"{split}_{id_}", { "tweet_id": cols[0], "tweet_url": cols[1], "tweet_text": cols[2], "class_label": cols[3], }