Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
csv
Languages:
Spanish
Size:
10K - 100K
License:
"""Multilang Dataset loading script.""" | |
from datasets import DatasetInfo, BuilderConfig, Version, GeneratorBasedBuilder, DownloadManager | |
from datasets import SplitGenerator, Split, Features, Value | |
from typing import Generator, Tuple, Union | |
import os | |
_DESCRIPTION = """ | |
This dataset includes Arabic/Dutch/Spanish Twitter data for CLEF 2024 CheckThat! Lab task1. | |
""" | |
_CITATION = """\ | |
@inproceedings{barron2024clef, | |
title={The CLEF-2024 CheckThat! Lab: Check-Worthiness, Subjectivity, Persuasion, Roles, Authorities, and Adversarial Robustness}, | |
author={Barr{\'o}n-Cede{\~n}o, Alberto and Alam, Firoj and Chakraborty, Tanmoy and Elsayed, Tamer and Nakov, Preslav and Przyby{\l}a, Piotr and Stru{\ss}, Julia Maria and Haouari, Fatima and Hasanain, Maram and Ruggeri, Federico and others}, | |
booktitle={European Conference on Information Retrieval}, | |
pages={449--458}, | |
year={2024}, | |
organization={Springer} | |
} | |
""" | |
_LICENSE = "Your dataset's license here." | |
class CLEF24EsData(GeneratorBasedBuilder): | |
"""A multilingual text dataset.""" | |
BUILDER_CONFIGS = [ | |
BuilderConfig(name="clef24_tweet_data", version=Version("1.0.0"), description="Multilingual dataset for text classification."), | |
] | |
DEFAULT_CONFIG_NAME = "clef24_tweet_data" # Default configuration name. | |
def _info(self): | |
"""Construct the DatasetInfo object.""" | |
return DatasetInfo( | |
description=_DESCRIPTION, | |
features=Features({ | |
"tweet_id": Value("string"), | |
"tweet_url": Value("string"), | |
"tweet_text": Value("string"), | |
"class_label": Value("string"), | |
}), | |
supervised_keys=("tweet_text", "class_label"), | |
homepage="https://gitlab.com/checkthat_lab/clef2024-checkthat-lab/-/tree/main/task1", | |
citation=_CITATION, | |
license=_LICENSE, | |
) | |
def _split_generators(self, dl_manager: DownloadManager) -> list[SplitGenerator]: | |
"""Returns SplitGenerators.""" | |
# Assumes your dataset is located in "." | |
data_dir = os.path.abspath(".") | |
splits = {"train": Split.TRAIN, "dev": Split.VALIDATION, "test": Split.TEST} | |
return [ | |
SplitGenerator( | |
name=splits[split], | |
gen_kwargs={ | |
"filepath": os.path.join(data_dir, f"{split}.tsv"), | |
"split": splits[split] | |
}, | |
) | |
for split in splits.keys() | |
] | |
def _generate_examples(self, filepath: Union[str, os.PathLike], split: str) -> Generator[Tuple[str, dict], None, None]: | |
"""Yields examples.""" | |
with open(filepath, encoding="utf-8") as f: | |
for id_, row in enumerate(f): | |
if id_ == 0: # Optionally skip header | |
continue | |
cols = row.strip().split('\t') | |
yield f"{split}_{id_}", { | |
"tweet_id": cols[0], | |
"tweet_url": cols[1], | |
"tweet_text": cols[2], | |
"class_label": cols[3], | |
} |