--- license: cc tags: - text - summarization task_categories: - text-classification - feature-extraction - token-classification - zero-shot-classification - sentence-similarity - text-to-speech size_categories: - 10MA larger version of YT-100K dataset -> YT-30M dataset with 30 million YouTube multilingual multicategory comments is also available which can be obtained by directly emailing the author of this dataset. # Introduction This work introduces two large-scale multilingual comment datasets, YT-30M (and YT-100K) from YouTube. The code and both the datasets: YT-30M (full) and YT-100K (randomly selected 100K sample from YT-30M) are publicly released for further research. YT-30M (YT-100K) contains 32M (100K) comments posted by YouTube channel belonging to YouTube categories. Each comment is associated with a video ID, comment ID, commenter name, commenter channel ID, comment text, upvotes, original channel ID and category of the YouTube channel (e.g., News & Politics, Science & Technology, etc.). # Data Description Each entry in the dataset is related to one comment for a specific YouTube video in the related category with the following columns: videoID, commentID, commenterName, commenterChannelID, comment, votes, originalChannelID, category. Each field is explained below: ``` videoID: represents the video ID in YouTube. commentID: represents the comment ID. commenterName: represents the name of the commenter. commenterChannelID: represents the ID of the commenter. comment: represents the comment text. votes: represents the upvotes received by that comment. originalChannelID: represents the original channel ID who posted the video. category: represents the category of the YouTube video. ``` # Data Anonymization The data is anonymized by removing all Personally Identifiable Information (PII).  # Data sample ``` { "videoID": "ab9fe84e2b2406efba4c23385ef9312a", "commentID": "488b24557cf81ed56e75bab6cbf76fa9", "commenterName": "b654822a96eae771cbac945e49e43cbd", "commenterChannelID": "2f1364f249626b3ca514966e3ef3aead", "comment": "ich fand den Handelwecker am besten", "votes": 2, "originalChannelID": "oc_2f1364f249626b3ca514966e3ef3aead", "category": "entertainment" } ``` # Multilingual data | **Language** | **Text** | |--------------|---------------------------------------------------| | English | You girls are so awesome!! | | Russian | Точно так же Я стрелец | | Hindi | आज भी भाई कʏ आवाज में वही पुरानी बात है.... | | Chinese | 無論如何,你已經是台灣YT訂閱數之首 | | Bengali | খুিন হািসনােক ভারেতর àধানমন্... | | Spanish | jajajaj esto tiene que ser una brom | | Portuguese | nossa senhora!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!... | | Malayalam | നമസ്കാരം | | Telegu | నమసాక్రం | | Japanese | こんにちは | # License [CC] (https://choosealicense.com/licenses/cc-by-4.0/#) # Bibtex ``` @misc{dutta2024yt30mmultilingualmulticategorydataset, title={YT-30M: A multi-lingual multi-category dataset of YouTube comments}, author={Hridoy Sankar Dutta}, year={2024}, eprint={2412.03465}, archivePrefix={arXiv}, primaryClass={cs.SI}, url={https://arxiv.org/abs/2412.03465}, } ```