--- license: other viewer: false tags: - deepfakes - gen-ai - text-to-video pretty_name: DeepAction Dataset v1.0 size_categories: - 1K * { font-family: Helvetica, sans-serif; } code { font-family: IBM Plex Mono,ui-monospace,SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,monospace !important; } a { color: #FFA500; } .container { display: flex; justify-content: space-between; /* Ensures even space between items */ align-items: stretch; /* Ensures boxes have the same height */ width: 100%; margin: 20px auto; gap: 20px; /* Consistent gap between boxes */ } .warning-box { background-color: rgba(255, 200, 100, 0.5); /* Lighter orange with more translucency */ border-radius: 10px; padding: 20px; flex: 1; box-shadow: 0 4px 8px rgba(0, 0, 0, 0.2); font-family: Arial, sans-serif; color: #333; display: flex; flex-direction: column; justify-content: flex-start; /* Align items to the top */ } .warning-sign { font-weight: bold; font-size: 1em; margin-bottom: 10px; } .warning-text { font-size: 1em; } .button { display: inline-block; padding: 10px 20px; margin: 5px; background-color: #FFA500; color: white; text-decoration: none; border-radius: 5px; } .button span { margin-right: 10px; } .button:hover { background-color: #E69500; } .warning { background-color: rgba(255, 165, 0, 0.2); border-left: 5px solid #FFA500; border-radius: 5px; padding: 10px; margin: 10px 0; color: #000 !important; } .warning .title { color: #FFA500; font-weight: bold; display: flex; align-items: center; } .warning .title span { margin-right: 10px; } .warning-banner { display: flex; align-items: center; justify-content: start; /* Adjusted to align content to the start */ background-color: #FFCC80; /* Adjusted to a darker shade of orange for better contrast */ color: #333; padding: 10px 30px; border-radius: 8px; box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1); /* Lighter shadow for subtlety */ margin: 20px auto; width: 95%; /* Adjust width as needed */ font-family: Helvetica, sans-serif; } .warning-icon { font-size: 1.5em; margin-right: 15px; color: #E65100; /* Darker orange for the icon */ } .warning-message { font-size: 1em; font-weight: bold; flex: 1; /* Ensures message uses available space */ } .warning-link { color: #0056b3; /* Standard link color for visibility */ text-decoration: none; /* Removes underline */ } .warning-link:hover { text-decoration: underline; /* Adds underline on hover for better interaction */ } The DeepAction dataset contains over 3,000 videos generated by seven text-to-video AI models, as well as real matched videos. These videos show people performing ordinary actions such as walking, running, and cooking. The AI models used to generate these videos include, in alphabetic order, AnimateDiff, CogVideoX5B, Lumiere, Pexels, RunwayML, StableDiffusion, Veo (pre-release version), and VideoPoet.

# Licensing TBD, will be provided by pcounsel
# Getting Started To get started, log into Hugging Face in your CLI environment, and run: from datasets import load_dataset dataset = load_dataset("TBD_DATASET_ID", trust_remote_code=True)

## Data The data is structured into eight folders, corresponding to different text-to-video AI models. Each folder has 100 subfolders containing AI-generated videos. These subfolders correspond to action classes; all videos in a given subfolder were generated using the same prompt (see the list of prompts here).

Real: Scripted

Real: Unscripted

Real: Hand movement

Real: Head movement

Fake: Wav2Lip with real voice

Fake: Wav2Lip with fake voice

Fake: ReTalking with real voice

Fake: ReTalking with fake voice

Fake: Face Fusion

Fake: Face Fusion + GAN

Fake: Face Fusion Live

## Misc Please use the following citation to refer to our work: ```bib TBD ``` Matyas Bohacek, Google* and Stanford University Hany Farid, University of California, Berkeley This work was done during the first author's (MB) internship at Google.