import torch import torch.nn as nn import torch.nn.functional as F import cv2 import numpy as np import os import glob from skimage.morphology import binary_dilation, disk import argparse import trimesh from pathlib import Path import subprocess import sys sys.path.append("../code") import render_utils as rend_util def cull_scan(scan, mesh_path, result_mesh_file): # load poses instance_dir = os.path.join('/p300/wangchy/huangbb/anti-alising-gaussian-splatting/data/DTU_dense', 'scan{0}'.format(scan)) image_dir = '{0}/images'.format(instance_dir) image_paths = sorted(glob.glob(os.path.join(image_dir, "*.png"))) n_images = len(image_paths) cam_file = '{0}/cameras.npz'.format(instance_dir) camera_dict = np.load(cam_file) scale_mats = [camera_dict['scale_mat_%d' % idx].astype(np.float32) for idx in range(n_images)] world_mats = [camera_dict['world_mat_%d' % idx].astype(np.float32) for idx in range(n_images)] intrinsics_all = [] pose_all = [] for scale_mat, world_mat in zip(scale_mats, world_mats): P = world_mat @ scale_mat P = P[:3, :4] intrinsics, pose = rend_util.load_K_Rt_from_P(None, P) intrinsics_all.append(torch.from_numpy(intrinsics).float()) pose_all.append(torch.from_numpy(pose).float()) # load mask mask_dir = '{0}/mask'.format(instance_dir) mask_paths = sorted(glob.glob(os.path.join(mask_dir, "*.png"))) masks = [] for p in mask_paths: mask = cv2.imread(p) masks.append(mask) # hard-coded image shape W, H = 1600, 1200 # load mesh mesh = trimesh.load(mesh_path) # load transformation matrix vertices = mesh.vertices # project and filter vertices = torch.from_numpy(vertices).cuda() vertices = torch.cat((vertices, torch.ones_like(vertices[:, :1])), dim=-1) vertices = vertices.permute(1, 0) vertices = vertices.float() sampled_masks = [] for i in range(n_images): pose = pose_all[i] w2c = torch.inverse(pose).cuda() intrinsic = intrinsics_all[i].cuda() with torch.no_grad(): # transform and project cam_points = intrinsic @ w2c @ vertices pix_coords = cam_points[:2, :] / (cam_points[2, :].unsqueeze(0) + 1e-6) pix_coords = pix_coords.permute(1, 0) pix_coords[..., 0] /= W - 1 pix_coords[..., 1] /= H - 1 pix_coords = (pix_coords - 0.5) * 2 valid = ((pix_coords > -1. ) & (pix_coords < 1.)).all(dim=-1).float() # dialate mask similar to unisurf maski = masks[i][:, :, 0].astype(np.float32) / 256. maski = torch.from_numpy(binary_dilation(maski, disk(24))).float()[None, None].cuda() # # if scan == '83': # import matplotlib.pyplot as plt # plt.imshow(maski.cpu().numpy()[0,0]) # points = (cam_points[:2, :] / (cam_points[2, :].unsqueeze(0) + 1e-6)).permute(1,0)[valid==1].cpu().numpy() # scatters = points[np.random.permutation(len(points))[:10000]] # plt.scatter(scatters[:,0], scatters[:,1], color='r') # plt.savefig(f'test{i}') # plt.clf() # plt.close() sampled_mask = F.grid_sample(maski, pix_coords[None, None], mode='nearest', padding_mode='zeros', align_corners=True)[0, -1, 0] # print(f'culling {i}') sampled_mask = sampled_mask + (1. - valid) sampled_masks.append(sampled_mask) sampled_masks = torch.stack(sampled_masks, -1) # filter mask = (sampled_masks > 0.).all(dim=-1).cpu().numpy() face_mask = mask[mesh.faces].all(axis=1) mesh.update_vertices(mask) mesh.update_faces(face_mask) # with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm: # triangle_clusters, cluster_n_triangles, cluster_area = (mesh.cluster_connected_triangles()) # triangle_clusters = np.asarray(triangle_clusters) # cluster_n_triangles = np.asarray(cluster_n_triangles) # cluster_area = np.asarray(cluster_area) # largest_cluster_idx = cluster_n_triangles.argmax() # triangles_to_remove = (triangle_clusters != largest_cluster_idx) # transform vertices to world scale_mat = scale_mats[0] mesh.vertices = mesh.vertices * scale_mat[0, 0] + scale_mat[:3, 3][None] mesh.export(result_mesh_file) del mesh if __name__ == "__main__": parser = argparse.ArgumentParser( description='Arguments to evaluate the mesh.' ) parser.add_argument('--input_mesh', type=str, help='path to the mesh to be evaluated') parser.add_argument('--scan_id', type=str, help='scan id of the input mesh') parser.add_argument('--output_dir', type=str, default='evaluation_results_single', help='path to the output folder') parser.add_argument('--DTU', type=str, default='Offical_DTU_Dataset', help='path to the GT DTU point clouds') args = parser.parse_args() Offical_DTU_Dataset = args.DTU out_dir = args.output_dir Path(out_dir).mkdir(parents=True, exist_ok=True) scan = args.scan_id ply_file = args.input_mesh result_mesh_file = os.path.join(out_dir, "culled_mesh.ply") cull_scan(scan, ply_file, result_mesh_file) cmd = f"python eval.py --data {result_mesh_file} --scan {scan} --mode mesh --dataset_dir {Offical_DTU_Dataset} --vis_out_dir {out_dir}" os.system(cmd)